ECLECTIC DISTRIBUTIONAL ETHICS

BY

JOHN E. ROEMER

COWLES FOUNDATION PAPER NO. 1140

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY
Box 208281
New Haven, Connecticut 06520-8281

2006

http://cowles.econ.yale.edu/
Eclectic distributional ethics
John E. Roemer
Politics Philosophy Economics 2004; 3; 267
DOI: 10.1177/1470594X04046238

The online version of this article can be found at:
http://ppe.sagepub.com/cgi/content/abstract/3/3/267
Eclectic distributional ethics

John E. Roemer
Yale University, USA

abstract Utilitarians, maximinners, prioritarians, and sufficientarians each provide examples of situations demonstrating, often apparently compellingly, that a sensible ethical observer must adopt their view and reject the others. I argue, to the contrary, that an attractive ethic is eclectic or pluralistic, in the sense of coinciding with these apparently different views in different regions of the space of social states. I reject the view that an appealing ethic can be universally maximin, prioritarian, or utilitarian.

keywords distributive justice, utilitarianism, maximin, sufficiency, priority

1. Introduction

My aim is to study the ethics of distribution in very simple societies, ones consisting of two people, whom I shall call A and B. There are at least four distributional ethics one might hold for these societies: maximin, prioritarian, utilitarian, or sufficientarian. I will explain these views precisely below. Advocates of each of these views often seem to have compelling arguments against the others, and this could be taken to imply some kind of ‘impossibility theorem’ for ethics. I will argue, to the contrary, that an attractive ethic requires that one hold all of these views in a restricted way: depending upon the problem, ethics may require one to be a maximinner or a prioritarian, or something else. Moreover, I hope to show that this eclectic view is attractive, even within the narrow confines of a welfarist setting.

Welfarism is the view, first, that everything of value about a person’s life can be summed up in a number that measures his or her welfare and that, second, a distributional ethic need only rank possible distributions of welfare, in a population, to be complete. As I here adopt a welfarist framework, I am not concerned with the ‘equality-of-what’ debate, which focuses upon what features of the
human condition should be the objects of distributional concern. Some restrictions on the conceptions of welfare that are admissible for my argument are imposed by what I next assume.

I assume that there are four welfare levels that are particularly important for individuals:

- The welfare level zero, associated with a terrible life (this is the lowest possible welfare level);
- a welfare level \(b_1 \), associated with a life barely worth living;
- a welfare level \(b_2 \), associated with a barely mediocre life; and
- a welfare level \(b_3 \), associated with a good or excellent life.

Clearly, \(b_3 > b_2 > b_1 > 0 \).

These names for the kinds of life people live at these welfare levels are informal. I will also say, informally, that anyone with a welfare level greater than \(b_2 \) has a worthwhile life, and anyone with a welfare level greater than \(b_3 \) is flourishing. This language is, however, only suggestive. The ways in which our ethical views relate to these three welfare levels will be introduced formally in the axioms to follow, and the attractiveness of the axioms must be judged independently of this particular language. It is possible that others may find the axioms attractive when the names given to the welfare levels are different from mine.

Clearly, the admissible conceptions of welfare, for my present purpose, are ones for which the existence of these thresholds of welfare levels make sense. We might, for instance, conceive of welfare as a measure of the degree of functioning, à la Sen, or of the standard of living. It would not, however, be appropriate to conceive of welfare as, simply, an individually non-comparable measure of preference satisfaction. In social-choice terminology, I will assume that the measure of welfare is cardinal and comparable across persons.

In what follows, \(u_i \) (with a subscript) will always indicate the welfare level of person \(i \) and \(u^j \) (with a superscript) will always indicate a particular social state, that is, an ordered pair of welfare levels, for example, \(u^j = (u^A, u^B) \). The domain of conceivable social states is the set of all possible ordered pairs of non-negative numbers, called the non-negative orthant, and denoted \(\mathbb{R}_2^+ \).

Some may wonder why, in this article, I take a welfarist approach, whereas in other work I have been quite critical of welfarism. The answer is that it is unwise to fight all one’s battles at the same time. While I remain critical of welfarism as a political philosophy, that is not the focus of my concern here. Rather, I focus upon a kind of dogmatism; that it is here illustrated with respect to the welfarist tradition is not particularly important. A similar dogmatism can be found in non-welfarist theory, and I would make a similar critique in that case. As non-welfarist ethics are generally more complex than welfarist ones, making the critique there would be somewhat more complicated, and pedagogically less transparent, than making it in the welfarist context.
2. Types of distributional ethic

A distributional ethic is a complete order on the set of possible social states, \(R^2 \). We denote the fact that state \(u^1 \) is ethically at least as desirable as the state \(u^2 \) in the usual way: \(u^1 \succeq u^2 \). The notation \(u^1 \succ u^2 \) is the strict preference relation.

It is convenient to represent preference orders by their indifference curve maps. An indifference curve is the set of social states that are ethically indifferent, according to a particular view. An indifference curve map is a set of indifference curves associated with a particular view, with the property that every point in \(R^2 \) lies on one, and only one, indifference curve in the map. An indifference curve map thus completely specifies an observer’s ethical preferences.

I display four important types of preference order, by their indifference curve maps, in Figure 1. Preferred social states always lie on ‘higher’ indifference curves.

To understand how indifference curve maps work, we first introduce the idea of a social situation. A social situation is a set of social states, which are available in a particular instance or problem. We assume that one of these states must be chosen. For example, the set \(T \) in Figure 2 is a social situation. (In economics, a social situation is called a utility possibilities set.)
Suppose the social situation were T, and one’s ethical preferences were given by the indifference map illustrated in Figure 2. Then, the observer would choose the social state p, that state in T which lies on the highest indifference curve that intersects T.

We can now explain the names of the preferences in Figure 1. The preference relation in Figure 1a is called maximin for the following reason. Let T be a social situation, illustrated in Figure 3a, and let e be the Pareto-efficient point at which the 45º ray intersects the boundary of T. The equal-welfare point that has the highest value of welfare, among all equal-welfare points in T, is e. The rectangular preferences of Figure 1a will always choose e, as long as e is Pareto efficient.

Consider, now, the social situation S in Figure 3b. Here, e is not Pareto efficient: both individuals have higher welfare at point f above the 45º line on S’s boundary. In this case, maximin preferences choose state f, the state that maximizes the minimum welfare of the two individuals in the set S. These are the preferences associated with the Rawlsian difference principle, where welfare, in this article, corresponds, for Rawls, to a measure of the bundle of primary goods a person has.

A number of philosophers, notably Temkin, distinguish between egalitarianism, which always chooses the point e, Pareto efficient or not, and maximin.\(^2\) I will not consider egalitarianism in this article (because I here adopt Temkin’s person-affecting principle, which says that if Social State 1 is ethically worse than Social State 2, then some person must have lower welfare in State 1 than in State 2).

A prioritarian is one, after Parfit, who gives priority to the worse off.\(^3\) This might be formalized in several ways; here, I take it to mean two things. First, at any point in \mathbb{R}^2 that lies above the 45º line (that is, a state in which A is the worse off), the absolute value of the slope of the indifference curve is greater than one and at every point below the 45º line (that is, a state in which B is the worse off),
the absolute value of the slope is less than one. Second, as we move away from the 45º line along an indifference curve and above (below) the 45º line, the slope increases (decreases) in absolute value. The first property means that, in order to increase the welfare level of the worse-off person by a given increment, the ethical observer is always willing to trade off a greater increment of welfare of the better-off person. The second property means that the terms of this trade-off become increasingly favorable to the worse-off person the greater is the inequality between the two (in the sense of distance from the 45º line).

The indifference maps in Figures 1b and 1c are both prioritarian. The difference is that the extreme prioritarian of Figure 1b is willing to trade off arbitrarily large amounts of the welfare of the better-off person to obtain a given increment in the welfare of the worse-off person as the latter approaches a welfare level of zero. The moderate prioritarian of Figure 1c, however, places a bound on the degree of trade-off that is permissible. (Mathematically, this means that as we approach the vertical axis along an indifference curve, the slope of the extreme prioritarian’s indifference curve approaches infinity, whereas the slope of the moderate prioritarian’s indifference curve is bounded.)

Utilitarian ethics are illustrated in Figure 1d. The effect of this indifference map is always to choose the social state in a given situation which maximizes the sum of the welfare levels of the two individuals. The trade-off between the welfare levels is always one for one.

It is clear from Figure 1 that maximin and utilitarian ethics are limiting cases of prioritarianism: the maximinner will accept any trade-off between welfare levels of the better off and the worse off, that is, he would trade off the welfare of the better-off person against a small gain for the worse-off person at an infinite rate. The utilitarian, on the other boundary, will never trade off the better-off person’s welfare at a rate greater than one for one.

While egalitarianism and utilitarianism are each well-defined distributional ethics (that is, they each are associated with one indifference curve map), priori-
tarianism is a very large family of ethics. There are many families of indifference curves that are prioritarian.

3. Distributional axioms

In this section, I propose several axioms on ethical preferences that I find attractive, and consider the kinds of restriction they impose on ethics.

Axiom 1: Ethical preferences are continuous.

To understand this axiom, we must first define the upper and lower contour sets of a social state. The upper (lower) contour set of state \(u \), under a given preference order or ethic, is the set of all states that are weakly preferred (‘dispreferred’) to \(u \). Ethical preferences are continuous if the upper and lower contour sets of every state are closed sets. This means the following. Let \(\{ u_j \} \) be a sequence of states, each of which is in the upper contour set of \(u \), which converges to a state \(u^* \). Then, \(u^* \) is in the upper contour set of \(u \). A similar statement must hold for lower contour sets.

Another (somewhat less precise) way of stating continuity is that every social state lies on a continuous indifference curve.

Informally, continuity means that there are no ‘jumps’ in the ethical preference order. (There would be a jump if the limit point \(u^* \) above were dispreferred to \(u \).) Continuity is not harmless: it eliminates the ‘leximin’ preference order. There are no continuous indifference curves that characterize the leximin ethic. Maximin is, however, continuous: its continuous indifference curve map is illustrated in Figure 1a.

Continuity is ethically attractive: it says that two social states that are almost the same, in terms of the welfare levels of society’s members, must be viewed as almost ethically indifferent. Indeed, leximin’s violation of continuity is often taken to render leximin unattractive. The typical indifference curve of leximin consists of two states: for example, \((3,2)\) and \((2,3)\) comprise one leximin indifference ‘curve’. There is no way of connecting these two states with a curve that maintains constant social indifference.

Axiom 2: Ethical preferences are anonymous.

This means that ethical preferences take into account only the properties of the social situation, not other (extraneous) characteristics of \(A \) and \(B \). Of course, the social situation can reflect the fact that, for example, \(A \) is disabled and \(B \) is able-bodied; but ‘ableness’ only counts to the extent that it is reflected in welfare levels. The mathematical formulation of anonymity is that the ethical indifference curves are symmetric about the 45° line. Another way of saying this is that if we rotate an indifference curve about the 45° line as the axis, it turns into itself. In particular, a social state \((a,c)\) is always indifferent to the social state \((c,a)\).
Axiom 3a: Ethical preferences are monotonic.
This means that if \(u_1^A \geq u_2^A \) and \(u_1^B \geq u_2^B \) then \((u_1^A, u_1^B) \geq (u_2^A, u_2^B) \). Giving more welfare to people is never ethically undesirable.
Monotonicity is a version of what Temkin calls the person-affecting principle. It rules out strict egalitarianism (the view that an equal-welfare state is always preferable to one with unequal welfares).
Closely related to monotonicity is the following axiom.
Axiom 3b (weak Pareto efficiency): If \(a > x \) and \(c > y \), then \((a,c) \succ (x,y) \).
Thus, if both persons have higher welfare in one state than in another, then the first state is ethically preferred.
Without weak Pareto efficiency, we would not have indifference curves, but perhaps indifference regions – large sets of states all of which were mutually indifferent. Axiom 3b guarantees that the sets of indifferent states are indeed curves in the plane.
Weak Pareto efficiency is the axiom that permits us to say that ‘higher’ indifference curves are associated with increasing ethical desirability.
We do not insist on (strong) Pareto efficiency because that would conflict with maximin. Pareto efficiency means: if at least one person is better off in Social State 2 than in Social State 1, and neither is worse off, then State 2 is socially preferred to State 1. Now consider two social states; in State 1 the welfare levels are \((5,5) \) and in State 2 they are \((6,5) \). According to maximin, these states are ethically indifferent; but the second one is better than the first according to strong Pareto efficiency.
Indeed, some would eliminate maximin on these grounds. I prefer not to do so, and therefore I require only weak Pareto efficiency.
Axiom 4: Ethical preferences are weakly prioritarian.
Weak prioritarianism relaxes the requirement that the trade-off that the ethical observer is willing to make, of the better-off person’s welfare against the worse-off person’s welfare, is increasing as we move along an indifference curve away from the 45° line; we replace increasing with non-decreasing. In particular, utilitarianism is weakly prioritarian.
Weak prioritarianism eliminates preferences in which the better-off person is favored.
Next comes the first controversial axiom.7
Axiom 5* (triage): A social state in which \(A \) has a life with welfare greater than or equal to \(b^2 \) while \(B \) has a life with a welfare level less than \(b^2 \) is preferred to any other state in which both \(A \) and \(B \) have lives that are valued at less than \(b^2 \).
The situation described in the axiom is called triage because the axiom justifies the practice that goes by that name on the battlefield. When medical resources are scarce, the worst off are not treated first; rather, those who are less badly off are treated first, if their lives can thereby be saved. In other words, it is
preferred to bring one wounded soldier above the threshold of survival and to leave a soldier untreated who will anyway die, than to extend the lives of two wounded soldiers for several hours, but who will in any case die. Here, \(b^2 \) is identified with the threshold of survival.

Axiom 5* is illustrated in Figure 4. At state \(e \), both persons have lives with welfare levels less than \(b^2 \) (barely worth living); at state \(f \), \(B \) lives a worthwhile (if mediocre) life and \(A \) has a life barely worth living, because her utility is less than \(b^2 \). State \(f \) must be preferred to state \(e \), even though \(A \)'s welfare is worse in state \(f \) than in state \(e \). We see this rules out maximin preferences, which would choose \(e \). (In particular, \(e \) is the Pareto-efficient, equal-utility point in \(T \).)

Indeed, utilitarianism, moderate prioritarianism, or extreme prioritarianism might all choose \(f \) over \(e \): only maximin is surely ruled out by Axiom 5*. It is because of its inconsistency with maximin that triage is a controversial axiom.

Next, I propose the following axiom.

Axiom 6 (universal decency): A social state in which both individuals have welfare greater than \(b^3 \) is preferred to any state in which one person has welfare less than \(b^3 \).

Axiom 6 rules out utilitarianism. To see this, consult Figure 5. Utilitarianism, when faced with the situation \(T \), chooses point \(g \), rather than some point, such as \(f \), on the arc \(CD \) (the set of states at which both flourish).

More interesting, however, is the following. Axiom 6, Axiom 1, and Axiom 3 together imply that the indifference curve through \((b^3, b^3)\) is rectangular, as shown in Figure 6. To see this, consider the sequence of social states \{\(u' \)\} illustrated by
the series of points in Figure 6 that converge toward \(\bar{u} \). By Axiom 1 and Axiom 6, \((b^3,b^3)\) is weakly preferred to every state \(u \). Therefore, by continuity (Axiom 1), \((b^3,b^3)\) must be preferred or indifferent to \(\bar{u} \). But \(\bar{u} \) is preferred or indifferent to \((b^3,b^3)\), by monotonicity (Axiom 3a). Therefore, \(\bar{u} \) must be indifferent to \((b^3,b^3)\). This argument works for every point on the rectangular graph illustrated in Figure 6, and so this graph is the ethical indifference curve containing \((b^3,b^3)\).
Unfortunately, the axioms as they now stand are inconsistent. To see this, consider the indifference curve containing \(G = (b^2, b^2) \) in Figure 7. The indifference curve through \((b^2, b^2) \) cannot pass below the line segment \(GJ \), for if it did, part of it would have a slope less than one in absolute value, which is forbidden by Axiom 4. Therefore, the indifference curve through point \(G \) passes on or above the segment \(GJ \). But that means that states inside the triangle \(FGJ \) are dispreferred to \(G \). By continuity, it follows that points on the 45° ray slightly below \(G \) are preferred to some points in the interior of \(FGJ \). This contradicts Axiom 5*. Prioritarianism, in other words, is inconsistent with triage, as stated in Axiom 5*. I suggest that to make the axioms compatible, we weaken the triage axiom to the following.

Axiom 5 (restricted triage): Let \((c, d)\) and \((f, g)\) be two social states such that:
\[
\min\{c, d, f, g\} \geq b^1; \\
\max\{d, f, g\} < b^2; \text{ and} \\
c > 2b^2 - d.
\]
Then \((c, d)\) is preferred to \((f, g)\).

Restricted triage is illustrated in Figure 8. In the premise of Axiom 5, only \(A \) has welfare greater than \(b^2 \) (lives a worthwhile life) in the alternative \((c, d)\), and both have a life barely worth living in the alternative \((f, g)\). We prefer the first alternative if \(A \)'s life, at welfare level \(c \), is sufficiently good: in particular, for Axiom 5 to be consistent with Axiom 4, we must have \(c > 2b^2 - d \), which guarantees that \((c, d)\) lies above the line \(GJ \) of Figure 8. In other words, total utility in
the state \((c,d)\) must be greater than \(2b^2\). I place the lower bound of \(b^1\) on the action of restricted triage so as to leave open the question of how we want to treat the lives of people that are not barely worth living. Axiom 5 says, precisely, that any state in the regions labeled \(a\) in Figure 8 is preferred to any state in the rectangle labeled \(\beta\).

Next, I suppose:

Axiom 7 (avoidance of penury): Social states in which either person’s life has a welfare level less than \(b^1\) are dispreferred to all social states in which both lives have a welfare level greater than \(b^2\).

Note that Axiom 7 rules out moderate prioritarianism, for it prevents any indifference curve through a point to the north-east of \((b^2, b^2)\) from passing through the horizontal and vertical rays originating at \(E\), the curve \(\text{HEE}'\) (see Figure 7). Of course, it also rules out utilitarianism.

Axiom 7 also places a limit on the trade-offs that triage might permit. It is never justified to give one person a wonderful life at the cost of the other having a life not worth living, if an alternative exists in which both lives are worth living.

I next show that the axioms imply that the states \(G\) and \(J\) in Figure 7 are ethically indifferent. Consider a sequence of states denoted \(K^1, K^2, \ldots\), illustrated in Figure 7, which converge to state \(J\) from the north-east of \(J\). By restricted triage (Axiom 5) and continuity (Axiom 1), these states are all at least as desirable as state \(G\). By continuity, it follows that \(J \succeq G\). Suppose that \(J \succ G\). Then by continuity, some states just to the south-east of \(J\) below the line segment \(J\bar{G}\) must
also be preferred to G. This contradicts priority, which says that the indifference curve containing G lies on or above the segment JG. Therefore, it follows that $J = G$.

It now follows that the segment JG lies on the indifference curve containing G; otherwise, priority would be violated. By anonymity (symmetry about the 45° ray), the segment JG also lies on this indifference curve. Therefore, the indifference through G is utilitarian in this range. Penury avoidance (Axiom 7) prohibits this curve from crossing into the shaded regions. Either this is the entire indifference curve containing G or the curve can extend vertically above J (as I have chosen to complete it in Figure 7) and horizontally to the right of J'.

The axioms permit us to fill in the indifference map in a variety of ways in the upper contour set of (b^2, b^3).

I will not analyze what ethical preferences look like in the upper contour set of (b^3, b^3), because I am not interested in the ethics of distribution in a society all of whose members are flourishing. In my view, distributioanl ethics are only important when it is possible that some people might not have a good life. But because the indifference curve through (b^3, b^3) is rectangular, all indifference curves above (b^3, b^3) lie entirely in the region where both individuals flourish.

Nor do I analyze what ethical preferences look like in the region of social states where either person has a life that is not worth living (welfare below b^1). We have at least decided (Axiom 7) that we should avoid these states whenever possible.

Nor do I discuss indifference curves that contain points in the region below the indifference curve through G and to the north-east of E. These curves might lie entirely in the triangular region JEJ' or they might pass through to the shaded region in Figure 7. Ethical views might well differ on how we make trade-offs between lives that are not barely worth living and lives that are barely worth living, but no more. This is the ethics of desperate situations.

Lastly, I discuss sufficientarianism, associated with Frankfurt, which I take to be the doctrine advising the ethical observer to ‘maximize the number of people who have enough’ in any situation. A complete doctrine requires specifying what ‘enough’ is; let me take it, here, to be the property of living a worthwhile life, that is, having a welfare level greater than b^2.

Axiom S (Sufficientarianism): Any state in which at least one person has welfare greater than b^2 is preferred to all states in which both have welfare less than b^2 and any state in which both have welfare greater than b^2 is preferred to all states in which at most one person has welfare greater than b^2.

Consult Figure 9. Four regions are labeled with the number of people who live worthwhile lives in them. It follows from Axiom S that points in region 2 are preferred to points in region 1, which are preferred to points in region 0. Continuity implies that the border between regions 0 and 1 (the bold line in Figure 9) constitutes one indifference curve and the boundary between regions 1 and 2 (drawn
with a lighter line) constitutes another indifference curve. We have a contradiction: the point \((b^2, b^2)\) cannot belong to two indifference curves, and there is no way of solving this problem without violating continuity. The sufficientarian might relax continuity at the point \((b^2, b^2)\), and assign that state to one of the two rectangular indifference curves. There are other possible weakenings of Axiom S that can render it compatible with continuity.

I will, however, not discuss these, because Axiom S has a more severe implication: the indifference curve (in Figure 9) on the common border of regions 0 and 1 is an indifference curve from the family of ‘maximax’ ethical preferences, which direct us to maximize the welfare of the better-off person. In particular, this is inconsistent with prioritarianism. We see, then, that despite what might appear to be a similarity between the ethic of sufficientarianism and the ethic of restricted triage, they are quite different views. For triage, at least in our formulation, is not inconsistent with prioritarianism, while sufficientarianism is. The lower indifference curve in Figure 9 violates Axiom 4 in the sharpest possible way: along it the observer is willing to make extremely large trade-offs of the welfare of the worse-off individual to increase the welfare of the better-off individual by a small amount. In addition, continuity guarantees that a statement like this is also true in the regions near this indifference curve. We will therefore not include Axiom S in our collection of attractive ethical axioms.

Axioms 1–7 do not determine a unique ethic. There are many ways of filling in the indifference map that do not violate the axioms. In Figure 10, I present an indifference curve map that is consistent with Axioms 1–7. The important point
is that there is at least one indifference curve of the maximin type: the one containing \((b^3, b^3)\). The indifference curve containing the point \((b^2, b^2)\) is utilitarian on a segment. By continuity, in the regions near those curves, preferences are ‘almost maximin’\(^{10}\) and ‘almost utilitarian’.

In the regions below and above \(G\), we have a good deal of freedom in how to fill in the map. There could be other regions of maximin, for instance. More generally, the indifference map above \(G\) can be of the extreme prioritarian variety with indifference curves that are asymptotic to the indifference curve through \(G\), as I have illustrated in Figure 10. The maximin indifference curve through \((b^3, b^3)\) and the indifference curve through \((b^2, b^2)\) demarcate three regions in which the behavior of preferences are independent, because no two indifference curves ever cross.

4. Conclusion

I hope to have shown that there is no inconsistency in an individual holding a distributional ethic which appears sometimes to be maximin, sometimes to be only prioritarian, and sometimes utilitarian. Indeed, I believe that Axioms 1–7 (excluding Axiom S) are quite compelling, and so an attractive ethic demands that the ethical observer appear to display these ‘inconsistencies’. My claim is, then, that these ‘inconsistencies’ are not inconsistencies. The precise resolution involves understanding that one’s ethical indifference curve map can, and perhaps must, display quite different features in different regions of the space of possible social states.
I think that this general point is quite robust with respect to different specifications of axioms. If one agrees that there are thresholds of welfare levels that are of critical importance, then different formulations of the social trade-offs around these thresholds will generally produce the kind of eclecticism that I have deduced here.

My argument might be considered to be a formalization of the view that distributitional justice is contextual: the context is defined by the region of the set of social states upon which focus is concentrated – more specifically, what kinds of welfare thresholds are salient for the problem at hand.

If my argument is persuasive, then it follows that one cannot produce general arguments for ethical positions that are maximin or utilitarian or never maximin (as some prioritarians claim to do). By a general argument, I mean one that is independent of the context, in the above sense. An attractive ethical view is contextual, eclectic, and pluralistic.

notes

I thank G.A. Cohen for a helpful critique of an earlier draft, John Weymark for his commentary, and participants in the Tulane University conference for their comments and reactions.

4. Weakly preferred means preferred or indifferent.
5. The leximin ethic is a refinement of maximin. According to leximin (2,4) is strictly preferred to (2,3), whereas according to maximin, these two states are socially indifferent.
6. All leximin indifference ‘curves’ consist of such pairs of points, except the points of the form (a,a), which are indifference curves by themselves.
7. This is itself a controversial assertion. Strict egalitarians (such as Temkin, *Inequality*) would dispute Axioms 3a and 3b.
9. The precise argument is as follows. Pick two states, P and Q, on the bold line. Now choose a sequence of states \{u^i\} in region 0 converging to P and a sequence of states \{v^i\} in region 1 converging to Q. Since every v^i is preferred to every u^j, by Axiom S, it follows by continuity that Q is weakly preferred to P. Now choose a sequence of states \{w^i\} in region 1 that converges to P and a sequence of states \{x^i\} in region 0 that converges to Q. The same argument implies, by continuity, that P is weakly preferred to Q. Hence, P must be indifferent to Q.
10. This statement means that in a region close to those curves, the indifference map of Figure 10 and the maximin indifference map are almost indistinguishable.