THE EMERGENCE AND PERSISTENCE OF THE
ANGLO-SAXON AND GERMAN FINANCIAL SYSTEM

BY

SANDEEP BALIGA and BEN POLAK

COWLES FOUNDATION PAPER NO. 1095

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY
Box 208281
New Haven, Connecticut 06520-8281

2004

http://cowles.econ.yale.edu/
The Emergence and Persistence of the Anglo-Saxon and German Financial Systems

Sandeep Baliga
Northwestern University

Ben Polak
Yale University

We use a moral hazard model to compare monitored (nontraded) bank loans and traded (nonmonitored) bonds as sources of external funds for industry. We contrast the theoretical conditions that favor each system with the historical conditions prevailing when these financial systems evolved during the British and German industrial revolutions. To study persistence, we consider an entry model where financiers take the industrial structure as given when they lend and firms take the financial system as given when they borrow. We show multiple equilibria can exist, compare equilibria in welfare terms, and discuss their robustness to coordination between lenders and borrowers.

Three questions motivate this article. First, why did different methods of finance emerge from the British and German industrial revolutions? To the degree that the new English industrial firms used external finance at all, it was often in the form of tradeable bills of exchange or promissory notes. Banks (notably, but not only, the Grossbanken) played a more prominent role in funding late-19th century German industrialization.¹ Second, why did these two modes of finance not converge more quickly over time? Separate so-called German and Anglo-Saxon financial systems persist today. And third, do these differences matter in terms of welfare?

Each of the three questions above has a good pedigree. For example, it was the power and importance of the German universal banks that led Hilferding (1910) to develop his theory of finance capital. Later, different methods of finance were among the main contrasts identified by

For an earlier version, see Baliga and Polak (1995). We thank the editor and two referees, Tim Guinnane, Stephen King, Andreu Mas-Colell, Abhijit Banerjee, Herbert Bloch, Margaret Bray, Jorg Decressin, Jeremy Edwards, John Fernald, Simon Grant, Eric Maskin, Boaz Moselle, Emma Rothschild, Paola Sapienza, Kotaro Suzumura, Tomas Sjostrom, David Weinstein, Jeff Williamson, Ernest von Thadden, Yishay Yafeh, Oved Yosha, and Richard Zeckhauser. Address correspondence to Sandeep Baliga, J. L. Kellogg Graduate School of Management, Northwestern University, 2001 Sheridan Rd; Evanston, IL 60208-2009, or e-mail: baliga@nwu.edu.

¹ See, for example, Ashton (1945, 1955, chap. 6), Crouzet (1963), Anderson (1970), Tilly (1992, 1998) and Neal (1994). Edwards and Ogilvie (1996), however, warn against exaggerating the importance of universal banks in Germany.

© 2004 The Society for Financial Studies
Gerschenkron (1962) in his seminal comparative study of early and late industrial revolutions:

The industrialization of England had proceeded without any substantial utilization of banking for ... investment purposes. ... [Whereas] the continental practices in the field of industrial investment banking must be conceived as specific instruments of industrialization in a backward country (p. 14).

More recently, Mokyr (1985, p. 37), in his survey of new thinking on the British industrial revolution, wrote of industrial banks: "why such institutions were relatively unimportant is still an unanswered problem," while Chandler (1990, pp. 415–419) praised the Grossbanken for shaping what he calls "German managerial capitalism."

The third question—the pros and cons of the Anglo-Saxon versus the German financial system—has given rise to much heated debate. The grass has often seemed greener on the other side of the fence [see, e.g., Schneider-Lenne (1994, p. 284)]. Analyses of Anglo-Saxon economies often blame the supposed greater separation of industry from finance for the decline of Britain from the late 19th century, and similar arguments were used recently in the United States to advocate reform of the Glass-Steagall Act. 2 Analyses of Germany sometimes argue that Grossbanken hindered growth, while similar complaints are sometimes made of Zaibatsu and Keiretsu in Japan [see, e.g., Neuburgher and Stokes (1974), Masuyama (1994), and Weinstein and Yafeh (1998)]. The debate has also resurfaced in the guise of choosing appropriate financial institutions for Eastern Europe and other emerging markets.

One major difference between the two financial systems was the degree to which creditors monitored firms. In England, creditors preferred a "hands-off" approach. This may have reflected a preference for liquid assets. Collins (1991) argues that English banks were first concerned with liquidity, avoiding long-term industrial loans, preferring to discount bills of exchange. 3 The banks certainly prescreened such borrowers, helping to overcome adverse-selection problems, but they did not like to get involved in continuous monitoring of the activities of debtor firms. The final holders of such widely traded securities may have been too distant to monitor directly or too many to internalize the costs of monitoring. Collins believes that bank's already small direct involvement with industry

3 For the use of bills of exchange, see Ashton (1945, 1955, chap. 6) and Anderson (1970).
may have actually declined in the late 19th century (especially after the crisis of 1878), at the time when German industrial banking was on the rise. This was "a kind of business that English banks had by this time come to abhor" according to Sayer's (1967a) classic banking textbook. For Sayers, liquidity was the central tenet of good English banking practice, whereas industrial loans required hands-on knowledge, and

... can be undertaken only by a large group of specialists, each one specializing in one or a few industries. The traditional bank manager is not qualified for such 'industrial consultant' work It is this distinction that lies behind the traditional view that a banker should make only 'self-liquidating' loans.4

Even when English banks provided direct loans to industry (e.g., in the form of short-term overdrafts), their monitoring did not impress Riesser (1909), the self-appointed spokesman for German industrial bankers:

... the [English] banks have never shown any interest in the newly founded companies or in the securities issued by these companies, while it is a distinct advantage of the German system, that the German banks, even if only in the interests of their own issue credit, have been keeping a continuous watch over the development of the companies, which they founded (p. 555).

German banks saw their role as providing direct credit to industry, not merely as traders of liquid assets. Gerschenkron (1962, p. 14) wrote that German industrial banks "established the closest possible relations with industrial enterprises." One form of monitoring was to place bank officers on the supervisory boards of industrial companies or to purchase large blocks of shares. Tilly (1969, p. 179) reports that Rhenish bankers maintained "their positions of influence within the [Rhenish Railway] company by holding or obtaining voting rights over significant blocs of its shares, and by occupying strategic positions on its board of directors." He adds that many other railway companies were similarly managed and financed.5 The German financial system has come to be associated with "hands-on," relationship banking.

4 Sayers (1967a, pp. 186–187, 188). We thank a referee for bringing this book to our attention. Collins and Hudson (1979, pp. 78) found that, although there were personal links between local banks and industry, banks were not closely involved with management unless a firm defaulted.

5 Hilferding (1910, p. 398) reports that by 1903, the six largest Berlin banks controlled 751 positions on boards of directors. See also Riesser (1909, pp. 897–920). Fohlin (1997, 1999), however, argues that representation by banks on supervisory boards was much lower before 1900. Edwards and Ogilvie (1996) point out that most German firms of the period were not joint stock and hence did not have supervisory boards, and the power of such boards has been exaggerated. For opposing views of the modern situation, see Edwards and Fischer (1994) and Schneider-Lenne (1994). For a recent survey of German banking history, see Guinanne (2001).
Section 1 models the choice of different methods of firm finance, focusing on moral hazard and on the trade-offs between monitored and nonmonitored (possibly traded) debt. We ignore traded equity since the latter was unimportant as a source of finance in either industrial revolution. The model is fairly standard and simple enough to allow a graphical treatment. Even such a simple model, however, can explain the emergence of two different financial systems, given the differences in the 18th-century English and 19th-century German economies. Section 2 then asks why these different systems persisted and considers the welfare and policy consequences. It extends the basic model to allow free entry by firms and lenders. In the extended model, the scale and number of firms (which were exogenous before) are now determined as part of the equilibrium along with the form of the financial system. We show that multiple equilibria may exist: in particular, a “German” equilibrium with fewer, larger firms and monitored finance; and an “Anglo-Saxon” equilibrium with more, smaller firms with unmonitored and traded debt. These equilibria may be welfare ranked, and an economy might get stuck in the worse equilibrium. We argue, however, that the Anglo-Saxon equilibrium is only robust when it is Pareto efficient, while a German equilibrium can be sustained even when it is inefficient. This suggests that there is no need for policy interventions to encourage German-style bank finance, but there may be a need for policy aimed at the development of Anglo-Saxon-style secondary financial asset markets.

There is a growing literature comparing financial systems. Different systems are associated with different commitment properties on the part of the lender. A trade-off between the ability to finance large projects and the ability to commit not to refinance bad loans is studied by Dewatripont and Maskin (1995). They identify a “German” equilibrium with large lenders as well as large firms and an “Anglo-Saxon” one with small ones. Their model does not address the issue of monitoring at all. Different types of finance, bank lending versus capital market based, might be beneficial at different points in a firm’s life cycle. Holmstrom (1996) uses a model similar to that presented in the first part of Section 1 to study this issue. Informed and uninformed lending can be compared within a

6 In the 18th century and for most of the 19th century, English domestic industry (with the exception of the railways) rarely raised capital directly from the London or provincial stock markets [see Mirowski (1981), Collins (1991, pp. 31, 34, 51), and Neal (1995)]. As late as 1873, industry and commerce accounted for just 1.4% of quoted London securities [see Michie (1987, p. 54)]. Even by 1913, Rajan and Zingales (2001) report the proportion of total GDCF raised by equity at 14% for the United Kingdom and 7% for Germany. Early on this may have been due to legislation such as the Bubble Act and the absence of adequate corporation law [see Patterson and Reiffen (1990)]. But even once these impediments were removed, the number of limited-liability companies did not take off until the 1880s, and even then equity was often private or narrowly held [see Sayers (1967b, pp. 145–150)]. In Germany also, legislation hindered the development of traded equity markets [see Tilly (1986, pp. 125–127), Fohlin (2000), Coffee (2001, pp. 56–58), and Guinnane (2001, pp. 53–54).
restricted class of feasible contracts. Rajan (1992) and Repullo and Suarez (1998) take this incomplete contracts approach. We place no such restrictions on the class of contracts a borrower and lender can sign and also study multiple equilibria. Pagano (1989) focuses on this last issue, especially on thick-market externalities, which we also consider to be important. Different financial systems are associated with different missing markets and hence different opportunities to smooth risk across individuals and time. This is the main concern of Allen and Gale (1995, 1997).

1. Monitored versus Nonmonitored Loans

In this section we consider some of the trade-offs involved in choosing either monitored bank loans or nonmonitored (possibly tradeable) debt. Once we have established circumstances such that we would expect to see one or the other system of finance emerge, we compare these with standard accounts of German and English industrialization. We start from a simple, standard moral-hazard model, and then add structure. Most of the arguments of this section can be presented using graphs. These graphical intuitions will be useful when we move to the more complex model in Section 2.

1.1 The basic model

Consider the choices facing an entrepreneur who, in period 1, has access to a new project that requires external financing. Both the size of the project and prices are exogenous (we will change this in Section 2). If a project is successful, it produces an output q that sells for a price $P > 1$. If it fails, it yields zero. In either case, the project terminates in period 2. Projects are ex ante identical. The probability that each project succeeds depends on actions and "efforts" taken by an entrepreneur whose participation is essential. These efforts involve private (possibly nonpecuniary) costs for the entrepreneur. Let π denote the probability of success and, for a project of prospective output q, let $q\Psi(\pi)$ be the associated private cost.
to the entrepreneur, where $\psi(0) = \psi'(0) = \psi''(0) = 0$, $\psi'(1) = \psi''(1) = \infty$, and $\psi''' > 0$.

A project of size q requires $c(q)$ units of capital. For now, assume that the entrepreneur has no private wealth to contribute to the project, so the capital must be borrowed. Borrowing can be either in the form of a monitored or a nonmonitored loan. If loans are not monitored, then the entrepreneur’s behavior is unobservable to lenders and will depend on incentives provided by the loan contract. These incentives will, in general, induce only second-best allocations. If loans are monitored, then the entrepreneur’s behavior is contractible. The advantage of monitoring is that it allows first-best allocations to be enforced. The disadvantage is that monitoring is costly.

The cost to the lender of providing a nonmonitored loan to finance the project is $tc(q)$, where $t > 1$ reflects the market interest rate. The cost to the lender of providing the corresponding monitored loan is $M + vc(q)$, where M reflects the costs of monitoring. We will allow v and t to differ, in particular allowing the latter to depend on the thickness of the market if nonmonitored loans are traded. All loan contracts specify the amount R paid back per unit of loan to the lender if the project is a success (i.e., if the loan is of size q, qR has to be repaid). For simplicity, for now, assume that there is no collateral, so that nothing is paid back if the project fails. Both entrepreneurs and lenders are risk neutral and do not discount future consumption. To begin with, we assume that all the bargaining power resides with the entrepreneur; that is, the financial sector is competitive and lenders make zero expected profit.

The problem facing the entrepreneur if she chooses a monitored loan is then given by

$$\max_{R,\pi} q - q\psi(\pi) - \pi R q$$

subject to

$$\pi R q \geq M + vc(q).$$

And the problem facing the entrepreneur if she chooses a nonmonitored loan is given by

subject to $\max_{R,\pi} q\pi P - q\psi(\pi) - \pi R q$

$$\pi R q \geq tc(q)$$

and

$$\pi \in \arg \max_{\pi} q\pi P - q\psi(\pi) - \pi R q.$$
incentive-compatibility constraint that arises in nonmonitored loans since the entrepreneur cannot commit to an effort level at the time the contract is signed.

The model is simple enough to illustrate graphically. Figure 1a illustrates both the monitored and nonmonitored loan problems for the case where the borrower is roughly indifferent between the two types of loans. The horizontal axis shows the probability of project success, \(\pi \). The vertical axis shows output prices, \(P \), and the contract repayment terms, \(R \). All vertical distances are per unit output of the project.

Consider first the monitored loan problem. The area under the concave curve \(P - \psi'(\pi) \) shows the entrepreneur's per unit expected revenue net of her private cost \(\psi \). This is maximized where the curve crosses the horizontal axis, hence the first-best probability of success—that stipulated by a monitored loan contract—is given by the equation \(P - \psi'(\pi_G) = 0 \). The dotted hyperbola, \(R = (M + vc(q))/q\pi \), represents the boundary of the lender-participation constraint. That is, along this line the per unit expected repayments to lenders, \(\pi_G R_G \), just covers the per unit cost of a monitored loan, \((M + vc(q))/q \). Thus the net per unit expected profit of an entrepreneur with a German-style loan is shown by the net revenue area \(0P\pi_G \) minus the borrowing-cost rectangle \(0R_G b\pi_G \). Exploiting the properties of a hyperbola, the latter rectangle is equal to the area \(0R_G b\pi_G \).

Next consider the nonmonitored loan problem. In this case, once the contract is signed, the entrepreneur does not receive the full benefit of her actions at the margin. The reason is that, if the project fails, the entrepreneur makes no payment to the lender, but if it succeeds, she makes a positive payment, \(R \). Therefore the entrepreneur only has an incentive to increase the probability of success up to the point where \(P - \psi'(\pi) = R \). The concave curve in Figure 1a shows all combinations of \(\pi \) and \(R \) that satisfy this incentive-compatibility constraint. Similar to before, the solid hyperbola, \(R = tc(q)/q\pi \), represents the lender participation constraint. The contract must specify a probability of success \(\pi \) and a repayment \(R \) on the incentive-compatibility curve, and on or above this zero-profit hyperbola; that is, for the case shown, between \(a \) and \(a \). At low values of \(P \) or high values of \(tc(q) \), no pair \((\pi, R) \) will satisfy both constraints. In these cases, nonmonitored loan contracts are infeasible. Assuming feasibility, as before, the per unit expected profit net of private costs is given by the area under the concave curve. Given the constraints, this is maximized at \(a \). Thus the per unit net expected profit of an entrepreneur with an Anglo-Saxon-style loan is shown by the net revenue area \(0P\pi_A \) minus the borrowing-cost rectangle \(0R_A a\pi_A \).

The nearly triangular area \(\pi_A a\pi_G \) (the area shaded downward plus the cross-hatched area) represents the per unit deadweight loss arising from the information asymmetry in a nonmonitored loan. On the other hand, the extra per unit cost of a monitored loan is shown by the rectangle \(\pi_A ab\pi \).
extra unit cost from monitoring

unit dead-weight loss from not monitoring

both of the above

entrepreneur's retained surplus

increased unit dead-weight loss from decreased π

Figure 1
The basic model when (a) borrowers and (b) lenders have all the bargaining power.
(the area shaded upward plus the cross-hatched area—throughout the article, we use the graphical convention that cross-hatching indicates the intersection of upward-and downward-shaded areas). To decide between an Anglo-Saxon- or German-style loan, the entrepreneur compares the per unit deadweight loss of an Anglo-Saxon-style loan with the per unit extra cost of a German-style loan. In the case illustrated, these are roughly equal.

The above discussion is summarized in the following proposition which we state without further proof.

Proposition 1. The entrepreneur will choose an Anglo-Saxon-style, nonmonitored loan if and only if there exists a $\pi_A \in (0, 1)$ given by (i) $P - \Psi'(\pi_A) = tc(q)/q\pi_A$ and (ii) $\Psi''(\pi_A) \geq tc_A(q)/q\pi_A^2$ such that (iii) $(\pi_GP - \Psi(\pi_G)) - (\pi_A P - \Psi(\pi_A)) \leq (M + vc(q) - tc(q))/q$, where π_G is given by (iv) $P - \Psi(\pi_G) = 0$. Otherwise the entrepreneur chooses a German-style monitored loan, if and only if (v) $\pi_GP - \Psi(\pi_G) - (M + vc(q))/q \geq 0$.

Proposition 1 (i) defines the intersection of the incentive-compatibility and (the boundary of) the lender-participation constraints. Item (ii) rules out points like a in favor of points like a: it is a second-order condition. Item (iv) defines the first-best probability level selected by the monitored loan contract. Item (v) ensures that the entrepreneur is not making losses. The key trade-off of the model is shown by item (iii). The left side is the deadweight loss associated with a nonmonitored loan. The right side is the additional cost of monitoring.

Even this simple model has some immediate implications. For example, a necessary condition for the entrepreneur to prefer a monitored loan (ceteris paribus) is that $R_G < R_A$. That is, if we observe both monitored and nonmonitored loans in the same industry in the same economy, despite the additional costs of monitoring, the interest rates on monitored loans should be lower. The intuition is that the probability of repayment of a monitored loan, π_G, is higher than that of a nonmonitored loan, π_A. In our picture, if $R_G = R_A$, then the extra cost rectangle must be greater than the deadweight loss triangle. The next subsection develops the comparative statics of this model and compares the results with stylized facts about England and Germany during their industrial revolutions.

1.2 Simple comparative statics: costs of credit

Assume that both t and v reflect the underlying opportunity cost of credit to the financier or the market base interest rate. Suppose that this cost of credit were to increase so that both t and v were to increase by the same

7 For completeness, we assume that if he is indifferent, the entrepreneur chooses an Anglo-Saxon-style loan.
amount. There is no change in the right side of Proposition 1(iii). But the left side, the deadweight loss of a nonmonitored loan, increases. In our picture, as the cost hyperbola moves out, it has no effect on the first-best \(\pi_G \), even though the interest rate on the loan, \(R_G \), rises. But as \(R_A \) rises, the induced level of \(\pi_A \) falls: as the hyperbola rises, the solution slides to the northwest along the incentive compatibility curve. This increases the size of the deadweight loss area. Thus the higher the opportunity cost of credit to the financial sector, the more likely an entrepreneur is to choose a monitored loan.

A possible empirical proxy for the opportunity cost of capital could be the real rate of interest on government debt. Homer (1963) provides nominal yields of British consols from the 1750s, of Bavarian and Prussian state bonds before 1869, and of German bonds after 1870. Two things stand out. First, nominal consol rates in England were lower in the late 19th century than they were at the height of the industrial revolution a century earlier. This fall in nominal rates, however, partly reflects price movements. In England, the late 18th century saw great price instability and possibly some inflation associated with the Napoleonic wars. The late 19th century saw first a period of deflation and then (from about 1896) a period of inflation associated in both cases with monetary movements that also affected Germany.\(^8\) The second thing that stands out is that German interest rates were consistently between a half and a whole point above their English equivalents. This could reflect higher risk premiums on less secure governments, but it is also consistent with stories of greater capital scarcity in Germany. It seems possible therefore that German industrialization occurred in a place (and perhaps also at a time) of relatively high real interest rates. If so, this may have favored the adoption of monitored finance.

1.3 Simple comparative statics: cartelization and protection

A feature of late 19th-century Germany that has attracted much attention is the degree to which some industries were both protected and cartelized [see, e.g., Borchardt (1973) or Webb (1980)]. It has often been suggested that German-style finance affected the growth of protected cartels. Large banks lobbied for industrial protection and encouraged the formation of cartels among their clients, and the monitoring of several firms by the same bank helped alleviate intracartel information problems. Here we explore the opposite (less discussed) direction of causation: could protection and cartelization have affected the choice of German-style financing?

Protection and cartelization presumably raised industrial output prices. In our model, increasing the price \(P \) has no effect on the right side of

\(^8\) See, for example, Solomou (1994). We thank a referee for stressing the importance of these price movements.
Proposition 1(iii). But increasing P has two affects on the deadweight losses on the left side of this condition:

$$(\pi_G - \pi_A) - \frac{R_A}{[\psi'(\pi_A) - (tc(q)/qR_A^2)]}$$

The direct effect, $(\pi_G - \pi_A) > 0$, increases deadweight loss. Monitored firms get to enjoy higher prices more often since they have a higher probability of succeeding. The indirect effect is the second term above. As prices rise, entrepreneurial effort (hence π) increases. For monitored loans, π was already at the first best, so there is only a second-order gain. For unmonitored loans, however, π was below the first best, so there is a first-order gain. The marginal return to increasing π is the height of point a from the horizontal axis, hence R_A in the numerator. The increase in π_A as we increase P depends on the relative slopes of the incentive-compatibility and zero-profit curves at point a, hence the denominator. This indirect effect is similar (but opposite) to the effect of increasing the costs of credit.

Thus the model suggests that the effects of monopoly and protection on the choice of financing are ambiguous. On the one hand, higher prices increase the cost of any given loss of production due to moral hazard. On the other hand, they diminish the actual loss of production due to moral hazard.

1.4 Simple comparative statics: bargaining power

During the British industrial revolution, it is unclear whether bargaining power lay with borrowers or lenders. For late 19th-century Germany, however, Hilferding (1910) regarded the power of finance as important enough to require adjusting orthodox Marxist theory. Gerschenkron (1962, pp. 14, 21) argued that banks “acquired a formidable degree of ascendancy over industrial enterprises,” describing this as the “master-servant” relationship. Edwards and Ogilvie (1996) argue that the power of banks has been exaggerated, especially as the relative size of industrial firms grew. But banks grew too. In 1913, 17 of the 25 largest enterprises in Germany (measured by paid-up capital) were banks.\(^9\) Moreover, banks had considerable control of access to the Berlin securities exchange [see Tilly (1995) and Fohlin (2000)].

While we cannot resolve this historical debate, we can ask what is the effect of shifting bargaining power from borrowers to lenders on the choice of type of loan. So far we have assumed that all the bargaining power lies with the borrower. Consider, next, the opposite case where all

\(^9\) Tilly (1986, pp. 113–114). For increased concentration in banking, see Riesser (1909), Tilly (1992), and Da Rin (1996).
the bargaining power lies with the lenders. The problem faced by such lenders if they choose a monitored loan is given by

$$\max_{R, \pi} q \pi R - (M + vc(q))$$ \hspace{2cm} (3a)$$

subject to

$$q \pi P - q \psi(\pi) - \pi R q \geq 0.$$ \hspace{2cm} (3b)$$

If the lenders chose a nonmonitored loan, the problem becomes

$$\max_{R, \pi} q \pi R - t c(q)$$ \hspace{2cm} (4a)$$

subject to

$$q \pi P - q \psi(\pi) - \pi R q \geq 0$$ \hspace{2cm} (4b)$$

and

$$\pi \in \arg \max_{\pi} q \pi P - q \psi(\pi) - \pi R q.$$ \hspace{2cm} (4c)$$

Equations (3b) and (4b) are borrower-participation constraints: they ensure the entrepreneur attains at least zero expected profits. Condition (4c) is the incentive compatibility constraint that arises in nonmonitored loans since the entrepreneur cannot commit to an effort level at the time the contract is signed.

Once again, we can illustrate the solution graphically. As before, a monitored loan contract will specify the efficient effort level, where the curve $P - \psi'(\pi)$ crosses the x-axis. Thus π_G in Figure 1a equals π_G^L in Figure 1b. The (per unit) cost of supplying the monitored loan is the same: $(M + vc(q))/q$ or the rectangles under the dotted hyperbolae through b in Figure 1. Therefore the total surplus available from a monitored loan is the same regardless of where bargaining power lies. Switching bargaining power from borrower to lender merely transfers this same surplus from one to the other. It is the borrower now who makes zero profit. In Figure 1b, the new dotted hyperbola H_G^L represents the lender’s per unit expected revenues $(\pi_G^L R_G^L)$ equal to the borrower’s per unit expected revenue (net of her private cost). That is, area $0R_G^L b^L \pi_G^L$ equals area $0P a^L \pi_G^L$.

For nonmonitored loans, however, switching the bargaining power from borrowers to lenders affects the size of the available surplus. Moreover, not all the surplus can be transferred to the lender. Nonmonitored loan contracts must still satisfy the incentive constraint, $P - \psi'(\pi) = R$, represented as before by the concave curve. Therefore the highest per unit expected revenue the lender can attain is that represented by the solid hyperbola, H_G^L, tangent to the constraint at a^L. These revenues are represented by the rectangle $0R_G^L a^L \pi_A^L$. This is smaller than the area $0P a \pi_A$, the borrower’s expected revenue net of her private costs when the borrower had the bargaining power. The difference is made up of two
areas: extra deadweight loss (shaded downward) and expected surplus retained by entrepreneurs (shaded upward). The former is the result of the higher interest rate, \(R_s' \), charged by lenders to extract surplus now that they have the bargaining power. This results in lower efforts by borrowers and hence a lower probability that the project is successful. The latter is analogous to the surplus retained by workers in efficiency wage contracts. The entrepreneurs have to retain some surplus if they are to supply any effort.

In short, with monitored loans, the surplus to lenders when they have the bargaining power is the same as that of borrowers when they have that power. With nonmonitored loans, the surplus to lenders is smaller. Therefore switching bargaining power from the borrower to the lender tends to favor monitored loans. This is consistent with the comparison of the German and English industrial revolutions.

1.5 Simple comparative statics: private wealth and collateral
Suppose now that the entrepreneur has available some private wealth \(w \). There are two cases of interest. Either this wealth is liquid and can be invested directly in the project, or it is too illiquid for this purpose but can serve as collateral. In the first case, the actual amount borrowed is reduced, hence less has to be repaid if the project is a success. Thus the entrepreneur with a nonmonitored loan has a greater incentive to work for the projects success. In contrast, for a monitored loan, the efficient effort level was already specified in the contract. Thus the presence of private wealth liquid enough to allow a degree self-finance reduces deadweight losses and makes it more likely that external finance (if any is still required) will be in the form of nonmonitored loans.

The case where the entrepreneur's private wealth is not directly invested but can be used as collateral is similar. Collateral reduces the difference between the amount paid back to the lender when the project succeeds and when it fails. This increases the incentive for the nonmonitored entrepreneur to provide effort and so increases \(\pi_A \) and reduces deadweight loss.\(^{10}\) Thus, even if the private wealth is only used as collateral, rather than directly invested, it favors the use of nonmonitored loans.

Once again, this picture is roughly consistent with the British experience. To use Landes as our authority again, "a good many of the early mill owners were men of substance," often with wealth built up from merchant activities, putting out, or even artisanal production within the sectors they later revolutionized. For example, almost three-fourths of the cotton spinning mills established in the Midlands from 1769 to 1800 were set up by people already established in some part of the textile industry. Not only

\(^{10}\) For a more detailed discussion of the comparative statics in moral hazard models with explicit bankruptcy-collateral rules, see Adler, Polak, and Schwartz (2000).
was the scale of the new industries small, but “18th century Britain enjoyed ... more wealth and income per head than the unindustrialized countries of today” [Landes (1969, pp. 65–66, 78); see also Pollard (1964, p. 300)]. Crouzet’s (1963) study of how industrialization was funded in Britain concluded that the “simple answer to this question is the overwhelming predominance of self-finance.” Mokyr (1993, p. 101), summarizing almost three decades of research, concludes that, “Students of the Industrial Revolution agree that most industrial fixed capital originated from internal finance.” Mokyr (p. 103) adds that, “The consensus on the role of banks is that, with some exceptions, they rarely figured in the financing of long-term investments.”

Germany’s industrialization, though later, started from a lower base in terms of accumulated industrial wealth. Indeed, this was a major reason why Gerschenkron thought that such late industrializers would need alternate financial institutions in order to concentrate sufficient capital. As the model predicts, early industrial entrepreneurs in Britain borrowed less overall and their relatively small external capital requirements were met by local bank loans, promissory notes, and bills of exchange. The larger requirements of their counterparts in Germany were met, at least in part, by the direct involvement of the industrial banks.

On the other hand, private wealth can have a negative external effect on tradeable debt. As self-finance increases, it can cause secondary asset markets to become thin. This may have happened in Britain toward the end of the 19th century. The high period of bank loans to industry in Britain appears to have been the middle decades of the 19th century [see, e.g., Collins and Hudson (1979) and Collins (1990, 1991)]. Thereafter, after a generation of industrial growth and accumulation, self-finance may have undermined the traditional role of English banks, not as monitors but as intermediaries to secondary markets. This may have led to what some critics see as increased separation between financial and industrial capital [see, e.g., Best and Humphreys (1986)].

We summarize the main comparative statics results from above as follows:

Proposition 2. Nonmonitored loans are relatively more likely to be chosen where the underlying cost of credit is low; bargaining power favors borrowers over lenders; and the entrepreneurs have more private wealth.

2. Scale, Entry, Persistence, and Welfare

In the previous section we presented a simple model where an entrepreneur with a fixed project size facing a fixed price of output chose between monitored versus unmonitored lending. We will now present an entry model which, among other things, endogenizes the choice of project size,
the number of firms, the output price, and the form of financing. We will try to explain the emergence and persistence of two different financial and industrial systems in 18th-century and 19th-century England and Germany as equilibrium phenomena. We take the stylized facts to be that the English system of unmonitored lending developed alongside an industrial system of many, small firms such as textiles, while the German system of monitored finance grew with industries consisting of fewer, larger firms such as steel and railways. Both the two financial systems and the differences in industrial scale then persisted at least into the early 20th century.

In Gerschenkron’s famous comparison of early and late industrializers, alongside his observations on the different roles of banks, he also noted (1962, p. 354) that “the more backward a country’s economy, the more pronounced was the stress in its industrialization on bigness of both plant and enterprise.” The size and capital requirements of the typical industrial firms in late 18th-century Britain were quite small. Landes, for example, writes:

The early machines, complicated though they were to contemporaries, were nevertheless modest, rudimentary, wooden contrivances which could be built for surprisingly small sums. A forty-spindle jenny cost perhaps £6 in 1792; The only really costly items of fixed investment in this period were buildings and power, but here the historian must remember that the large, many-storeyed mill that awed contemporaries was the exception. Most so-called factories were no more than glorified workshops: a dozen workers or less; one or two jennies, perhaps, or mules; and a carding machine to prepare the rovings.\(^{11}\)

As late as 1841, Gatrell (1977) found that the median Lancashire cotton primary processing firm had just over 100 employees, while the median firm in subsidiary textile production had fewer than 50 employees. The same study identified more than 1000 separate firms in the cotton textile industry in Lancashire alone.

The size of the typical German firm by the 1870s was much larger. First (and most important), whereas textiles were the leading sector of the first industrial revolution, the second industrial revolution was dominated by heavy industries such as steel and chemicals with larger fixed capital requirements and larger optimal plant sizes. Second, even in the by-now older sectors, firm sizes generally increased after 1850. Third, German firms may have been larger than their English counterparts. The number of spindles per firm in the British spinning industry increased by 50% from 1850 to 1870. In Germany, it increased by 600%. In steel smelting, by the turn of the century, the median member of the German steel cartel was

\(^{11}\) Landes (1969, pp. 64–65). On the small scale of British industrial fixed capital, see also Cameron (1969, pp. 36–38) and Pollard (1964, p. 303).
four times larger than its equivalent firm in Britain [Landes (1969, pp. 223–224, 263) and Borchardt (1973, p. 133)].

Not only were German firms probably larger, but within Germany, the Grossbanken appears to have favored larger firms. As early as 1853, the stated policy of the Bank of Darmstadt was to concentrate on firms with a turnover of 50,000 Guilders. Tilly (1986) has called this "Development Assistance for the strong,"\(^\text{12}\) while Gerschenkron (1962, p. 10) argued that this later resulted in a sectorial bias:

... until the outbreak of World War I, it was essentially coal mining, iron and steel making, electrical and general engineering, and heavy chemical output which became the sphere of activity of German banks. The textile industry, the leather industry, and the foodstuff producing industries remained on the fringes of bank interest ... it was heavy rather than light industry to which the attention was devoted.

In short, the late 18th-century British economy was typified by relatively many, relatively small industrial firms. At least relatively small scale persisted in Britain into the late 19th century, while German industry was typified by larger firms. We generate these stylized facts as features of two equilibria of a model in which firms can chose scale when they enter.

Up to now we have assumed that the cost of capital for tradeable loans, \(t \), is exogenous. In practice, however, the cost of providing a loan depends in part on whether the financier can trade the debt instrument on a secondary asset market. The degree to which tradeable securities are liquid depends on the thickness of the secondary asset market. As Pagano (1989) points out (albeit in the context of equity rather than debt), the size and diversity of the market reduce asset volatility. The use of tradeable debt by industrial firms in Britain would itself have helped develop the market and encouraged others to follow. There may also have been fixed costs in establishing market infrastructure. Thus there are external scale economies in trading debt.

Following Diamond (1984) and others, we assume that it is impossible to trade monitored debt. Recall that the monitoring here is of actions taken by the entrepreneur in the course of production, it is not just prescreening of the loan. When debt is widely held, no individual investor has sufficient incentive to monitor the on-going project. As Miwa and Ramseyer (2000) put it:

In choosing between dispersed and concentrated sources of capital, the entrepreneur trades off liquidity against monitoring. If he obtains his money from a wide group of investors, he can offer a more liquid

\(^{12}\) Landes (1969, p. 208) argues that the Grossbanken "sought out the largest possible clientele." Fohlin (1997) finds that firm size strongly affects the probability of finding bank directors on the supervisory board, but this may be driven by large firms needing to be listed on the Berlin stock exchange. See also Tilly and Fremling (1976, especially p. 420) and Tilly (1982).
claim—an investment that can more easily sell and more readily fit within a diversified portfolio. All else equal, investors will prefer more liquid and diversified investments to less. If he obtains his money from a small group of investors, they can more effectively constrain managers: because they each hold a large interest in the firm, they face fewer collective action problems in monitoring or intervening; because they can more readily monitor and intervene, they can better prevent managers from doing silly or crooked things.\footnote{Grossman and Hart (1980) make the same point for a public firm with many, small shareholders. This view also underlines the modern debate on banking in the United Kingdom and Germany [see, e.g., Prevosa and Ricketts (1994) and in modern transitional economies [see, e.g., Berglof (1995)]. Miwa and Ramseyer go on to describe how the Japanese cotton spinning industry of the early 19th century found an alternate way around these problems.}

The close holding of debt by 19th-century German banks gave them an incentive to monitor, while their large scale and wide portfolios reduced the moral hazard between the delegated monitor and its depositors. If monitoring involves fixed costs, there are internal scale economies in monitoring: it is cheaper to monitor one large loan than two small loans.\footnote{Guinan (2001) uses the idea that there are scale economies in monitoring to examine the lending policies of 19th-century German agricultural-credit cooperatives.}

In our model we have already assumed there is a fixed cost M in monitoring. We can model the external economies of traded debt as follows. If the nonmonitored loan is not traded, then $t = v$. If the debt instrument is traded, however, then t depends on the thickness of the secondary asset market, which in turn depends on the size and number of firms in the economy that have tradeable nonmonitored loan contracts. When such markets are thin, assume that $t \geq v$. When such markets are thick, assume $t < v$. As in our initial model, assume that borrowers have all the bargaining power.\footnote{The conclusions are the same for the other case.}

All entrepreneurs face the same technology and can choose the scale of their projects. All lenders can choose whether to establish an investment bank with the technology and personnel to monitor firms, or just a regular bank. The size and number of firms and the type of the financial system are determined in equilibrium. The idea we want to capture is that industrial entrepreneurs may take financial institutions as given when they organize firms. Similarly lenders may take the organization of firms as given when they choose what type of financial institutions to form.\footnote{Here we use project scale as our example of an organizational choice of firms, but the general idea could be extended. The organization of firms could refer to types of machinery or to administrative forms. For example, firms set up to be run by family members who have special knowledge of the business may not easily be adapted to allow for external monitoring.} An economy may then find itself with German-style banks and German-style firms, each designed taking the other as given, or with Anglo-Saxon-style secondary asset markets and Anglo-Saxon-style firms. We first describe
these German and Anglo-Saxon types of equilibria, then show that multiple equilibria can arise and discuss whether the persistence of different financial systems might have welfare implications. Throughout we will consider only pure-strategy equilibria and will ignore integer constraints.

2.1 The entry model
To allow the number of projects to be endogenous, assume there are a large number of (potential) entrepreneurs each with an identical project, producing an identical product. We assume that no entrepreneur has access to any private capital, all project risks are independent, and the product faces a downward-sloping demand curve. There are a large number of (potential) lenders.

As before, a project that would (if successful) produce quantity q requires a capital investment of $c(q)$, monitored loan costs the lender $M + vc(q)$, and a nonmonitored loan costs the lender $tc(q)$. To keep things simple we assume that t can take on only two values: $\tau < \nu$ when secondary-asset markets are thick, or ν when secondary asset markets are thin.\footnote{While we identify each project with a separate firm and a thick market with many project/firms, we could also allow for the possibility that one firm has many different projects and let market thickness depend on the number of projects not the number of firms. We do not pursue this extension in greater detail here, but see Subrahmanyam (1991) and Gorton and Pennacchi (1993).}

We assume that the output market is large enough such that if, in equilibrium, all active firms used tradeable debt, then the secondary asset market would be thick. We assume that $c(q)/q$ has the standard U-shape with fixed costs: that is, $c, c', c'' > 0$ for all $q > 0$; there is a $q^* > 0$ such that $c'(q^*) = c(q^*)/q^*$; and $\lim_{q \to 0} c(q)/q = \infty$.

All loan contracts specify the per unit amount to be paid back, R_i, in the event that a funded project is successful (i.e., if the loan is of size q_i, q_iR_i has to be repaid). For a monitored loan, the contract also specifies the effort level (or probability of success) π_i of the ensuing project. For a nonmonitored loan, efforts are unobservable, so the probability of success π_i will be that induced by the incentives implicit in the contract. Define efficient scale to be the scale that minimizes average costs. For a nonmonitored loan, the efficient scale q^*_A is simply q^* defined above. For a monitored loan, the efficient scale q^*_G is larger since monitoring involves an extra fixed cost M. Let N denote the set of firms that are funded in the first stage, and let N be the number of such firms.

The model has three stages:

Stage 1. Each entrepreneur chooses a scale q_i. This is the quantity of output that her proposed project will produce if it is funded and if it is successful. Simultaneously each financier chooses whether to set up a monitoring technology or not. Each financier is matched with exactly
one entrepreneur. Then, either the entrepreneur and financier agree on a loan contract and the project is funded, or the project is abandoned.

Stage 2. Each entrepreneur whose project has been funded chooses the probability π_i that it will succeed. For those with monitored loans, this must be the level specified in the contract. The entrepreneurs cannot observe the number of competitors N, their competitors’ prospective outputs $(q_j)_{j \in \mathcal{N} \setminus i}$, or their contracts and probabilities of success $(R_j, \pi_j)_{j \in \mathcal{N} \setminus i}$.

Stage 3. Firms either succeed or fail. The successful firms sell their output at price $P = \alpha - \beta Q$, where Q is realized aggregate output. Our assumption that the output market is large is equivalent to assuming that α is large and β is small. Each firm i whose project is a success repays the amount R_i per-unit of loan specified in its contract, while firms whose projects fail default on their loans.¹⁹

2.2 German equilibrium

We first consider equilibria in which all loans are monitored. To start, we will ignore deviations to nonmonitored loan contracts, and then return to these later. We construct an equilibrium in which all financiers form investment banks (equipped to monitor loans), all firms choose the same prospective output q_G, and all the firms that are funded have the same monitored loan contract (R_G, π_G). Let N_G be the number of these active firms, and let P_G be the expected output price. These five variables $(q_G, R_G, \pi_G, N_G, P_G)$ are defined by the following five equations:²⁰

\[
q_G \pi_G [\alpha - \beta (N_G - 1) \pi_G q_G - \beta q_G] = \pi_G q_G R_G + q_G\psi(\pi_G) \tag{5a}
\]

\[\pi_G q_G R_G = M + \nu(c(q_G)) \tag{5b}\]

\[q_G [\alpha - \beta (N_G - 1) \pi_G q_G - \beta q_G] = q_G \psi'(\pi_G) \tag{5c}\]

\[\pi_G [\alpha - \beta (N_G - 1) \pi_G q_G - 2\beta q_G] = \nu'(q_G) + \psi(\pi_G) \tag{5d}\]

\[\alpha - \beta N_G \pi_G q_G = P_G. \tag{5e}\]

This is similar to a standard Cournot-entry equilibrium. Equation (5a) is the zero-profit condition for firms. The term in brackets is the output price that firm i expects to get for its product if it is successful, so the left side is just expected revenue. The right side is expected costs: the expected

¹⁸ An earlier version of this model reversed this assumption. The analysis was more complicated, but the results and intuitions were qualitatively the same.

¹⁹ We assume that, in equilibrium, the output market is thick enough for us to ignore defaults caused by ex post price risk. Again, this assumption is not essential.

²⁰ A solution to these equations exists (for some range of M) under our maintained assumption that α is large and β is small.
repayment to the lender plus the cost of effort. Equation (5b) is the zero-profit condition for lenders. The left side is the expected repayment. The right side is the cost of financing the monitored loan. Equation (5c) selects the optimal level of π for the firm, taking as given the outputs and probabilities of success of the other active firms. The left side is the revenue the firm gets if it is successful. This is the marginal benefit of increasing π. The right side is the marginal cost. Therefore Equations (5b) and (5c) correspond to the model in Section 1. Fixing q_G and writing L_G for $\alpha - \beta(N_G - 1)\pi_Gq_G$, the intercept of the residual demand curve, Figure 2a shows the solution to these three equations. The zero-profit condition of Equation (5a) is shown by the marked equality between the two nearly triangular areas: that is, the upward-shaded and cross-hatched area under the curve, $0(L_G - \beta q_G)\pi_G$, is equal to the downward-shaded and cross-hatched rectangle, $0(R_Gq_G)d\pi_G$. Equation (5d) selects the prospective quantity. The left side is like the standard Cournot marginal revenue (taking as given the actions of the other firms) except that this marginal revenue is only attained with probability π_G. The right side is the marginal cost of increasing the prospective quantity. Equation (5e) defines the expected equilibrium price.

We can think of $AC_G(q) := (M + vc(q))/q$ as the average financing cost function for a monitored loan. Then, from Equations (5a), (5b), and (5d), we obtain

$$AC'_G(q_G) = -\pi_G\beta.$$

This corresponds to the standard Cournot-entry (or monopolistic competition) result that the demand curve and the average cost curve are tangent.\footnote{Notice that the repayment term, R, adjusts to account for changes in the financing cost of the loan as q increases.}

It remains for us to consider the possibility that one of the firms chooses a nonmonitored loan (and possibly a different level of prospective output). Without loss of generality, we can assume that this loan is not traded. If not, the deviant contract would be the only tradeable debt instrument, so $t = v$. Suppose the deviant firm is active in the proposed equilibrium, that it instead chooses prospective output q, and that it proposes a nonmonitored loan contract that specifies a repayment of R if the project is successful. If the contract is accepted, the deviant firm will choose π such that

$$(\alpha - \beta(N_G - 1)\pi_Gq_G - \beta q) - \psi'(\pi) = R.$$

\footnote{The π_G in Equation (5f) corrects for the fact that the firm only obtains revenue when it succeeds. The relevant tangency here is between (expected) demand and the full average costs, including the average cost of effort $\psi(\pi)$. The latter does not affect the derivative in Equation (5f) since it is a constant.}
firm's unit expected revenues (net of $\psi(\pi)$)
firm's unit expected debt repayment cost
both of the above

(a)

firm's unit expected revenues (net of $\psi(\pi)$)
firm's unit expected debt repayment cost
both of the above

(b)

Figure 2
The model with entry: (a) German and (b) Anglo-Saxon equilibrium.
For this contract to be accepted by the lender, it must satisfy her participation constraint:

\[vc(q) = \pi qR. \]

Combining these two equations yields

\[(\alpha - \beta(N_G - 1)\pi_G q_G - \beta q) - \psi'(\pi) = vc(q)/q^2. \tag{7} \]

Equation (7) is analogous to the analysis of nonmonitored loans in Section 1 except that the output price is now affected by the prospective quantity. The left side is analogous to the concave downward-sloping curve representing the incentive-compatibility constraint. The right side is analogous to the hyperbola representing the lender-participation constraint. If there is no intersection of these two curves, there is no \(q \) and \(\pi \) that satisfies Equation (7). In this case, there will be no profitable feasible deviations to nonmonitored loan contracts.\(^{23}\) We study this condition in more detail in the section on multiple equilibria below. In particular, we show it is met when monitoring costs \(M \) are low.

Therefore, define

\[g_G(q, \pi) := (\alpha - \beta(N_G - 1)\pi_G q_G) - \beta q - \psi'(\pi) - vc(q)/q^2. \tag{8} \]

Then

Proposition 3. If \(g_G(q, \pi) < 0 \) for all \(q > 0 \) and all \(\pi \) in \([0, 1]\), then Equations (5a)–(5e) describe a German equilibrium.

2.3 Anglo-Saxon equilibrium

Next, we consider equilibria in which all loans are nonmonitored and traded. To start, we will ignore deviations to monitored loan contracts and return to these later. We construct an equilibrium in which all financiers form regular banks (not equipped to monitor loans), all firms choose the same prospective output \(q_A \), all the firms that are funded have the same nonmonitored loan contract \(R_A \), and these contracts are then traded on the (thick) secondary asset market. All the active firms choose the same probability of success \(\sigma_A \). Let \(N_A \) be the number of these active firms and let \(P_A \) be the expected output price. These five variables \((q_A, R_A, \sigma_A, N_A, P_A)\) are defined by the following five equations:

\[\tau c(q_A)/q_A \pi_A^2 = \psi''(\pi_A) \tag{9a} \]

\[\pi_A q_A R_A = \tau c(q_A) \tag{9b} \]

\[q_A(\alpha - \beta(N_A - 1)\pi_A q_A - \beta q_A) = q_A \psi'(\pi_A) + q_A R_A \tag{9c} \]

\(^{23}\) Here we have only argued that such deviations by active firms are infeasible. Our condition, however, is (a fortiori) sufficient for nonactive firms, since there are then \(N \) nondeviant firms pushing down the price.
\[
(c'(q_A) - c(q_A)/q_A)\tau/q_A = -\pi_A\beta \tag{9d}
\]
\[
\alpha - \beta N_A \pi_A q_A = P_A. \tag{9e}
\]

Before providing a formal argument, let us try to provide some intuition for these expressions. Unlike the German equilibrium, this is not a standard Cournot-entry equilibrium. For example, Equation (9a) is not a zero-profit condition. With moral hazard, entry cannot drive the firms' expected profits to zero. The intuition is that if prices were driven too low, it would be impossible to satisfy both the lender's zero-profit constraint and the borrower's incentive-compatibility constraint.

These two constraints are given by Equations (9b) and (9c). Combining yields
\[
(\alpha - \beta(N_A - 1)\pi_A q_A - \beta q_A) - \psi'(\pi_A) = \frac{\tau c(q_A)}{q_A \pi_A}. \tag{10}
\]

Fixing \(q_A\) and writing \(L_A\) for \(\alpha - \beta(N_A - 1)\pi_A q_A\), the intercept of the residual demand curve, the left side of Equation (10) is represented by the downward-sloping concave curve in Figure 2b. The right side is represented by the hyperbola. The first condition above, Equation (9a), describes the tangency between these two curves at \(e\): that is, the slope of the borrower's incentive constraint, taking the derivative of the left-hand side of Equation (10), gives \(-\psi''(\pi_A)\) and the slope of the lender zero-profit constraint, taking the derivative of the right-hand side of Equation (10), gives \(-\tau c(q_A)/(q_A \pi_A^2)\). Therefore the first three conditions taken together ensure that no further entry can occur. If any further firms were to enter, the \(y\)-intercept of the first curve (and hence the entire curve) would shift down, leaving no intersection. Thus, in equilibrium, no further firm will be funded. The upward-shaded and cross-hatched areas in the figure represents the firm's (per unit) expected revenues net of the "effort cost" \(\psi(\pi_A)\). The cross-hatched area represents the firm's expected debt repayment cost \(\pi_A R_A\). Thus the area that is upward-shaded but not cross-hatched (the area \((L_A - \beta q_A)eR_A\) is the firm's (unit) expected surplus. As in the model of Section 1, the entrepreneurs have to retain this surplus if they are to supply any effort.

Equation (9d), selects the prospective quantity. We can think of \(AC_A(q) := \tau c(q)/q\) as the average financing cost function for a traded nonmonitored loan. Using this, we can rewrite Equation (9d) as
\[
AC_A'(q_A) = -\pi_A\beta. \tag{11}
\]

Like Equation (5f'), this equation says that the slope of the average cost curve is equal to the slope of the (expected) demand curve. Unlike Equation (5f'), however, the two curves are not tangent: indeed, as we have seen, profits are not zero. Instead, an intuition for this condition is that no active firm should be able to improve its (expected) price-cost margin by altering its prospective quantity.
More formally, consider a deviation in the prospective quantity chosen by one of the firms that is active in the putative equilibrium (holding fixed the choices of the other firms). To rule out such a deviation, it is enough to show that the deviant firm will not be funded. Define

\[g_A(q, \pi) := (\alpha - \beta(N_A - 1)\pi_A q_A) - \beta q - \psi'(\pi) - AC_A(q)/\pi. \tag{12} \]

From Equation (10), we know that \(g(q_A, \pi_A) = 0 \); that is, the incentive-compatibility and lender-participation constraints are met (exactly) at \((q_A, \pi_A)\). Thus a sufficient condition for no such deviant firm to be funded is that \(g(q, \pi) < 0 \) for all \((q, \pi) \neq (q_A, \pi_A)\). This is equivalent to saying that the function \(g(q, \pi) \) achieves its maximum at \((q_A, \pi_A)\). The first-order condition of this maximization problem with respect to \(\pi \) is

\[AC_A(q_A) = \pi_A^2 \psi''(\pi_A), \tag{13} \]

which is just a rewriting of Equation (9a). The first-order condition with respect to \(q \) yields \(-\beta - AC_A'(q)/\pi_A = 0\), which is Equation (9d) from the definition of \(AC_A(q) \). In the appendix we provide a condition under which these first-order conditions are sufficient and we show that the sufficiency condition is always satisfied when \(\beta \) is small; that is, when the market is large. Since Equations (9a) and (9d) are sufficient to ensure that no active firm that deviates will be funded, they are also sufficient to ensure that no further inactive firm can be funded. Replacing \((N_A - 1)\) with \(N_A\) in Equation (12) decreases \(g_A(q, \pi) \) for all \(q \) and \(\pi \).

In the appendix we show that there always exists a pair \((q_A, \pi_A)\) that satisfies both Equation (11) and Equation (13). Therefore we are left with three unknowns \((R_A, N_A, P_A)\) and three equations \((9b, 9c, \text{and} 9e)\). But, as effort, \(\pi_A \), and scale, \(q_A \), are both determined and are positive, Equation (9b) determines a positive payment, \(R_A \). Substituting these three variables in Equation (9c) determines the number of firms, \(N_A \) (if \(\alpha \) is large, \(N_A \) is positive). Finally, substitution of these four variables in Equation (9e) determines the output price, \(P_A \) [which is positive as the left-hand side of Equation (9c) is positive and effort, \(\pi_A \), is less than one]. That is, if \(\alpha \) is large and \(\beta \) is small, a solution to Equations (9a)–(9e) exists.

It remains for us to consider the possibility that one of the financiers deviates to form an investment bank equipped to monitor loans. First consider the case where the deviant financier is matched with a firm that is not active in the proposed equilibrium. Suppose that this pair agrees on a monitored loan contract specifying \(\pi \). The joint surplus of the deviant lender and her partner firm is then given by

\[V_1(\pi) := q_A \pi(\alpha - \beta N_A \pi_A q_A - \beta q_A) - q_A \psi(\pi) - M - \nu c(q_A). \tag{14} \]

Therefore a necessary condition for equilibrium is \(V_1(\pi) \leq 0 \) for all \(\pi \) in \([0, 1]\). We study when this condition might be satisfied in the section on multiple equilibria below.
Next consider the case where the deviant financier is matched with a firm that is active in the proposed equilibrium. Again, suppose that this pair agrees on a monitored loan contract specifying \(\pi \). The joint surplus of the deviant lender and her partner firm is then given by
\[
V_2(\pi) := q_A \pi(\alpha - \beta(N_A - 1)) - \beta q_A - q_A \psi(\pi) - M - v_c(q_A).
\]
We do not need \(V_2(\pi) \) to be negative for all \(\pi \), since the deviant active firm would make positive expected profits in the putative equilibrium. These positive expected profits are given by
\[
V_A := q_A \pi(\alpha - \beta(N_A - 1)) - \beta q_A - q_A \psi(\pi) - \tau c(q_A). \tag{15}
\]
Therefore the last necessary condition for equilibrium is \(V_2(\pi) \leq V_A \) for all \(\pi \) in \([0, 1]\). Notice, however, that the functions \(V_1 \) and \(V_2 \) only differ by an extra \(\beta \pi q_A \) in the expected price. If the market is large, that is, \(\beta \) is small, then this term will be small. In this case the constraint that excludes entry by an extra monitored firm will imply the constraint that excludes an active (already profitable) firm switching to monitoring.

To summarize:

Proposition 4. When \(\beta \) is small, if \(V_1(\pi) \leq 0 \) for all \(\pi \) in \([0, 1]\), then Equations (9a)–(9e) describe an Anglo-Saxon equilibrium.

2.4 Comparing equilibria

We are interested in studying the nature of German and Anglo-Saxon equilibria when competition between firms is intense. Therefore we will focus on the case where the market is large, that is, \(\beta \) is small.

First, consider the scale of firms. Recall that in the German equilibrium, \(AC'_G(q_G) = -\pi_G \beta \). Therefore, as \(\beta \) becomes small, the equilibrium scale \(q_G \) converges to the efficient scale \(q^*_G \) (i.e., where \(AC'_G(q) \) is zero). Again, this is similar to monopolistic competition: as the demand curve becomes flatter, production becomes more efficient. Similarly in the Anglo-Saxon equilibrium, from Equation (11), as \(\beta \) becomes small, the equilibrium scale \(q_A \) converges to the efficient scale \(q^*_A \). Since \(q^*_A < q^*_G \), we can conclude that when the market is large (i.e., \(\beta \) is small), the scale of firms in an Anglo-Saxon equilibrium is smaller than that of firms in a German equilibrium.

Next, consider the case when equilibrium output prices are the same, \(P_A = P_G \), as might arise if there was open trade in goods but not in direct financial services. Equations (5c) and (10) determine the probabilities of success in the two equilibria. After dividing by \(q_G \), the left side of Equation (5c) is equal to \(P_G - \beta q_G (1 - \pi_G) \). The probability of success, \(\pi_G \), is bounded, and as \(\beta \) becomes small, \(q_G \) converges to \(q^*_G \), which is also bounded. Therefore as \(\beta \) becomes small, this left-side term converges
to P_G. Similarly the first term in brackets in Equation (10) converges to P_A as β becomes small. Therefore, comparing Equations (5c) and (10), if $P_A = P_G$, we see that $\pi_A < \pi_G$. Looking now at the expressions for the equilibrium prices, Equations (5e) and (9e), since prices are assumed to be equal and $\pi_A q_A < \pi_G q_G$, we have $N_A > N_G$.

To summarize:

Proposition 5. If the output market is large (i.e., β is small), then firms are larger in the German than in the Anglo-Saxon equilibrium. If, in addition, output prices are equal, then the German equilibrium involves fewer firms and these firms have a lower probability of failure.

This seems a reasonable approximation of stylized facts about the German and English economies as they persisted in the early and mid-20th century. English firms are thought to have been smaller and more numerous than their German counterparts and to have had fewer direct links to industrial banks. Some writers have also claimed that firms "fail" less often in the German financial system, but this is hard to assess empirically given that bankruptcy laws differed in two economies.24

2.5 Multiple equilibria

We next turn to which equilibrium will prevail. There are parameter values at which both types of equilibrium can arise. To see this, consider fixing all parameters except M, the fixed cost of monitoring. We will show that there is a range of M such that the economy could either be in a German or an Anglo-Saxon equilibrium. Moreover, when markets are large, this range contains the parameter level at which output prices are the equal.

To do this, as before, let $L_A := \alpha - \beta (N_A - 1) \pi_A q_A$. This is the intercept of the residual (expected) demand curve for each firm in an Anglo-Saxon equilibrium. Similarly let $L_G := \alpha - \beta (N_G - 1) \pi_G q_G$. Clearly the L_G depends on M, the cost of monitoring. More formally, using the zero profit conditions for the German equilibrium, let $L_G(M)$ be defined by

$$\max_{q, \pi} q \pi [L_G(M) - \beta q] - q \psi(\pi) - M - \nu c(q) = 0. \quad (16)$$

By the envelope theorem, $L_G(M)$ is increasing in M. Thus, by appropriate choice of M in Equation (16), $L_G(M)$ can take on any value between 0 and α.25 We can now rewrite the necessary and sufficient condition from

24 See, for example, Dyson (1986). For a discussion of German bankruptcy law, see Edwards and Fischer (1994, pp. 159–164).

25 The case $L_G(M) = \alpha$ is when M is so large that there are no other active firms. To get $L_G(M) = 0$ may require $M < 0$, but we give a condition such that $M > 0$ below.
Proposition 3 for a German equilibrium to be sustainable (i.e., \(\max_{q,\pi} g_G(q,\pi) < 0 \)) simply as \(M < \bar{M} \), where the latter is defined by
\[
\max_{q,\pi} \left(L_G(M) - \beta q - \psi'(\pi) - vc(q)/q\pi \right) = 0. \tag{17}
\]

Similarly, we can rewrite the necessary and sufficient condition from Proposition 4 for an Anglo-Saxon equilibrium to be sustainable (i.e., \(\max_{\pi} V_1(\pi) \leq 0 \)) simply as \(M \geq \underline{M} \), where the latter is defined by
\[
\max_{\pi} \left(\left[L_A - \beta_0 q_A \right] - \beta q_A - q_A \psi(\pi) - M - vc(q_A) \right) = 0. \tag{18}
\]

Notice that \(V_1(\pi_A) = V_A - \beta_0 q_A - M - (v - \tau)c(q_A) \). But the profits made by an incumbent firm \(V_A \) is always positive. Thus, if \(\beta \) is small and \(\tau \) is close to \(v \), then \(M > 0 \).

It remains to show that \(\bar{M} > M \). Since \(0 < L_A < \alpha \), there exists an \(M^* \) such that \(L_G(M^*) = L_A \). We will show that \(M < M^* < \bar{M} \). By the definition of \(L_A \), we know that \(g_A(q,\pi) = L_A - \beta q - \psi'(\pi) - \tau c(q)/q\pi \), and that the maximum of this function is zero. Thus, if \(M = M^* \), then \(g_G(q,\pi) = L_G(M^*) - \beta q - \psi'(\pi) - vc(q)/q\pi < 0 \) for all \((q,\pi) \) since \(v > \tau \). Intuitively the deviant does not have access to a thick secondary asset market on which to trade debt. Therefore, by the definition of \(\bar{M} \), equation (17), \(\bar{M} > M^* \).

Next, we show that \(M^* > M \). In the definition of \(M \), Equation (18), the maximization is only with respect to \(\pi \) (the scale of the deviant entrant is fixed at \(q_A \)). Intuitively the entrant firm does not have the optimal scale for monitored loan. Allowing scale to adjust would increase profits. That is,
\[
\max_{q,\pi} q\pi \left(\left[L_A - \beta_0 q_A \right] - \beta q \right) - q\psi(\pi) - M - vc(q) \geq 0. \tag{19}
\]

But setting \(M = M \) in Equation (16), the zero-profit condition for the German equilibrium, and comparing it with Equation (19) implies \(L_G(M) \leq L_A - \beta_0 q_A \) or \(L_G(M) < L_A = L_G(M^*) \). Therefore, \(M < M^* \).

When the market is large (\(\beta \) small), the intercept terms \(L_G(M) \) and \(L_A \) are approximately equal to the prices \(P_G \) and \(P_A \), respectively. Hence when the cost of monitoring is \(M^* \), output prices are approximately equal. To summarize:

Proposition 6. When \(\beta \) is small, there is a nonempty range of monitoring costs \([\underline{M}, \bar{M}]\) such that both Anglo-Saxon and German equilibria are sustainable. This range contains the level of monitoring cost at which output prices are approximately equal in the two equilibria. When \(M \) is above this range, only Anglo-Saxon equilibria can be sustained. If \(v \) is close to \(\tau \), then \(M > 0 \), so there is also a range in which only German equilibria can be sustained.
2.6 Welfare comparison
Since both types of equilibria can arise, there is scope for coordination failures. How are the equilibria welfare ranked? Active entrepreneurs always prefer the Anglo-Saxon equilibrium since they make positive profits. Lenders are indifferent since they make zero profits in either case. Consumers prefer lower output prices.

Suppose the costs of monitoring are M^*, so $L_G(M) = L_A$ and $P_A = P_G$ approximately. In the appendix, we show that P_G (like L_G) increases in M when β is small. Hence, when $M > M^*$, the Anglo-Saxon equilibrium Pareto dominates the German equilibrium: consumers prefer the lower prices and entrepreneurs prefer positive profits. When $M < M^*$, however, the equilibria are not Pareto ranked: consumers prefer the lower prices in the German equilibrium, while entrepreneurs prefer Anglo-Saxon equilibrium profits. At least when monitoring costs are low, the gains to consumers probably outweigh the losses to entrepreneurs. That is, for some parameter values, the Anglo-Saxon equilibrium is Pareto dominant, but for others, the German results in greater social surplus. To summarize.

Proposition 7. For β small (up to our approximation between intercepts and prices), when $M > M^*$, the Anglo-Saxon equilibrium Pareto dominates the German equilibrium; when $M < M^*$, entrepreneurs prefer the former but consumers prefer the latter.

The possible coordination failures are not, however, symmetric. It is possible for the economy to get stuck in a German equilibrium when an Anglo-Saxon equilibrium Pareto dominates. To establish a thick market for tradeable assets requires the coordination of many agents. But if the project size decision of an entrepreneur follows the signing of a lending contract or if bilateral coordination between a lender and a borrower is possible, the Anglo-Saxon equilibrium can be disturbed.

Up until now, we have only considered deviations from an Anglo-Saxon equilibrium in which a lender unilaterally sets up an investment bank equipped to monitor loans, taking as given the scale of all potential projects. Since, in equilibrium, this scale is not chosen to be the optimal scale for a monitored loan, it is harder for the deviant lender to make a profit. Suppose now, however, that a lender and an entrepreneur can get together in forming an industrial bank to monitor a loan and designing a project of appropriate scale. In this case, by the argument used in Proposition 6 using Equations (16) and (19) above, we know the deviation will be profitable if $L_G(M) < L_A - \beta \pi_{AQ_A}$. If we make our usual assumption that β is small, then this is close to saying that $P_G < P_A$.

That is, an Anglo-Saxon equilibrium is only robust to such bilateral deviations when it would result in lower prices; that is, when it is Pareto dominant.
Alternatively, suppose that an entrepreneur does not commit to a project size when he enters. Instead, he first signs a contract with the lender with whom he is matched. This effectively makes this part of stage 1 of the entry game sequential rather than simultaneous. Otherwise all other aspects of the timing are unchanged. With this alteration, the "coordination failure" that supports the nonoptimal Anglo-Saxon equilibrium cannot occur when \(P_G < P_A \): The entrepreneur and lender will make the project size and financing decision that maximizes surplus. Hence, when \(P_G < P_A \), they will sign a contract where the entrepreneur chooses scale close to \(q_G^* \) and the lender sets up a monitoring technology.

Proposition 8. For \(\beta \) small (up to our approximation between intercepts and prices), if bilateral deviations involving one lender and one entrepreneur are possible or if the project scale is determined after the lending contract is signed, then an Anglo-Saxon equilibrium is sustainable if and only if it Pareto dominates a German equilibrium. A German equilibrium can be sustained even when it is Pareto inefficient.

In fact, there are important historical examples that seem to correspond to these types of bilaterally efficient decisions. Conditions in the late 19th-century United States look a lot like those we have said favor the adoption of monitored loan finance: relatively large-scale industrial firms and powerful banks operating a "money trust." Sure enough, something like German-style banking started to emerge. Hilferding (1910) suggested that J.P. Morgan represented the American counterpart to German finance capitalism, and a modern version of this view is supported by Carosso (1970), De Long (1991), and Ramirez (1995). This development was hindered, however, by regulation, first limiting bank size and geographical scope, then with the Clayton and Glass-Steagall Acts, directly restricting bank-industry relationships [see, e.g., Calomiris and Ramirez (1996)]. It is too simple, however, to argue that such regulation trapped the United States in an inappropriate, costly \(A \)-equilibrium. In the mid-20th century, large \(M \)-form firms and holding companies developed internal capital markets. They monitored their divisions and subsidiaries much as banks might have monitored clients in the absence of regulation. These institutional responses look a lot like the bilaterally efficient decisions our model suggests will emerge if an \(A \)-equilibrium is inefficient. The \(M \)-form firm plays both lender (center) and borrower (division). Recent financial deregulation and the reemergence of "universal banking" in the United States, might even undermine the need for such bank-substitute corporations [see Calomiris (1998)].

26 See, for example, Baker's (1992) study of Beatrice.
The results also have policy implications. Since bilateral deviations seem plausible and seem to have occurred in practice, the model suggests that we should worry more about the possibility of getting stuck in an inefficient German equilibrium (without thick secondary asset markets) than getting stuck in an inefficient Anglo-Saxon equilibrium (without monitoring investment banks). That is, contemporary calls for government intervention to encourage German-style bank-based financial systems may be misguided. On the other hand, it is possible that the German economy is stuck in a path-dependent, inefficient equilibrium. These are cases where government should restrict monitored bank loans or promote secondary markets, for example, by issuing government debt through the same channels. In 18th-century Britain, tradeable industrial debt benefited from the preexisting markets in government and merchant bonds, while bank lending may have been hindered by restrictions to joint stock banking. In the late 19th-century United States, networks that developed to place large issues of government debt in the Civil War were later used to distribute commercial paper, while monitored bank lending may have been hindered by restrictions to bank branching and scale. Similarly some have advocated the use of government debt issue to encourage the development of secondary asset markets in Eastern Europe today.

Appendix

A.1 Showing that \((q_A, \pi_A)\) is the unique argmax of \(g_A\)

First, notice that \(g_A(q, \pi) < (\alpha - \beta (N_A - 1))\pi_A q_A - A C_A(q) / \pi\). Thus if \(\pi := [\alpha - \beta (N_A - 1) \pi_A q_A] / A C_A(q)\), then \(g_A(\cdot, \pi) < 0\) for all \(\pi < \pi\). Since \(\alpha - \beta (N_A - 1) \pi_A q_A > 0\), we know that \(\pi > 0\). Since \(g_A(q, \pi) = 0\), we know that \(\pi < 1\). Therefore we can restrict attention to \(\pi\) in \([\pi, 1]\).

It is enough to show therefore that the function \(g\) is strictly locally concave for all critical values \((q, \pi)\) such that \(\pi > \pi\). The local concavity conditions are

\[-\psi''(\pi) - 2 A C_A(q) / \pi^3 < 0\]

\[-A C''_A(q) / \pi < 0\]

\[(A C''_A(q) / \pi) (\psi''(\pi) + 2 A C_A(q) / \pi^3) - (A C'(q) / \pi^2)^2 > 0.\]

The first two of these are met by our assumptions on the functions \(\psi\) and \(c\). Since we only require quasi-concavity, the last condition need only hold at critical values. Substituting in the first-order conditions for critical values and rearranging yields:

\[A C''(q) (\pi^2 \psi''(\pi) + 2 \pi \psi''(\pi)) - \beta^2 > 0.\]

\[27\] This is the opposite conclusion to that of Dewatripont and Maskin (1995). They argued that equilibria with German-style (large) banks and German-style (long-term) projects can persist only when they are efficient. Their Anglo-Saxon equilibria with small banks and short-term projects can persist even when inefficient.
We require this condition to hold for all critical values such that $\pi > \pi$. Notice that, since $\pi > 0$, this condition is met as β approaches zero; that is, if the market gets large.

A.2 Showing that there exists a solution to Equations (11) and (13)

Let $q_1(\pi)$ be defined by $ACA(q_1(\pi)) = \pi^2 \psi''(\pi)$ and let $q_2(\pi)$ be defined by $AC'(q_2(\pi)) = \beta \pi$. By construction $q_2(0) = q^*$, $q_2(1) > 0$, and $q_2'(\pi) < 0$ on $[0, 1]$. Similarly $q_1^{-1}(q^*) > 0$ and $q_1(\pi) \rightarrow 0$ as $\pi \rightarrow 1$. Thus continuity ensures a solution.

A.3 Showing that P_G is increasing in M

Recall that $P_G = L_G + \beta q_G(1 - \pi_G)$. Differentiating with respect to M, we get

$$\frac{dP_G}{dM} = \frac{dL_G}{dM} + \beta \frac{dq_G}{dM} (1 - \pi_G) - \beta q_G \frac{d\pi_G}{dM}.$$

We know that $dq_G/dM > 0$, $dL_G/dM > 0$, and from Equation (5c), we know that $d\pi_G/dM = (dL_G/dM)\psi''$. Therefore $dP_G/dM > dL_G/dM (1 - \beta q_G/\psi'')$. Since $\psi'' > 0$ for all $\pi > 0$, the term in parentheses is positive for small β.

References

