FULLY MODIFIED IV, GIVE AND GMM ESTIMATION WITH POSSIBLY NON-STATIONARY REGRESSORS AND INSTRUMENTS

BY

YUICHI KITAMURA
AND
PETER C.B. PHILLIPS

COWLES FOUNDATION PAPER NO. 955

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY
Box 208281
New Haven, Connecticut 06520-8281
1998
Fully modified IV, GIVE and GMM estimation with possibly non-stationary regressors and instruments

Yuichi Kitamuraa,*, Peter C. B. Phillipsb

a Department of Economics, University of Minnesota, Minneapolis, MN 55455, USA
b Cowles Foundation for Research in Economics, Yale University, Box 208281, New Haven, CT 06520-8281, USA

Received 1 November 1992; received in revised form 1 July 1995

Abstract

This paper develops a general theory of instrumental variables (IV) estimation that allows for both $l(1)$ and $l(0)$ regressors and instruments. The main goal of this paper is to develop a theory in which one does not need to know the integration properties of the regressors in order to obtain efficient estimators. The estimation techniques involve an extension of the fully modified (FM) regression procedure that was introduced in earlier work by Phillips and Hansen (1990). FM versions of the generalized instrumental variable estimation (GIVE) method and the generalized method of moments (GMM) estimator are developed. In models with both stationary and nonstationary components, the FM-GIVE and FM-GMM techniques provide efficiency gains over FM-IV in the estimation of the stationary components of a model that has both stationary and non-stationary regressors. The paper exploits a result of Phillips (1991a) that we can apply FM techniques in models with cointegrated regressors and even in stationary regression models without losing the method's good asymptotic properties. The present paper shows how to take advantage jointly of the good asymptotic properties of FM estimators with respect to the non-stationary elements of a model and the good asymptotic properties of the GIVE and GMM estimators with respect to the stationary components. The theory applies even when there is no prior knowledge of the number of unit roots in the system or the dimension
The paper proceeds as follows. Section 2 gives a preliminary outline of the problem and explains the general idea behind FM estimators. Section 3 details the general model that will concern us, lays out some of the key assumptions and gives a lemma whose results are important in motivating the construction of our estimators. Section 4 develops a general theory for FM-IV estimators that allows for cointegrated regressors and cointegrated instrumental variables. Section 5 shows how to extend this theory to FM-GMM and FM-GIVE estimators. Section 6 gives asymptotic chi-squared tests for the validity of the instruments in GMM and GIVE estimation. Section 7 concludes the paper with a brief summary of our main formulae and results so that these are more accessible to empirical researchers. Derivations and proofs are given in a technical appendix. A table of the main notation that we use to distinguish the variables and the estimators in the paper by the various affixes is included.

A summary word on notation in the paper which is not explained in the table is necessary. We use vec(A) to stack the rows of a matrix A into a column vector, P_A to signify the projection matrix onto the space spanned by a matrix A, and $[x]$ to denote the smallest integer $\leq x$. We use the symbols \xrightarrow{d}, \xrightarrow{p}, and $\xrightarrow{\ast}$ to signify convergence in distribution, convergence in probability, and equality in distribution, respectively. The inequality $\xrightarrow{\ast}$ then denotes positive definite (p.d.) when applied to matrices. We use $I(d)$ to signify a time series that is integrated of order d, $BM(Q)$ to denote a vector Brownian motion with covariance matrix.
\(\Omega \). We write integrals with respect to Lebesgue measure such as \(\int_0^1 B(s) \, ds \) more simply as \(\int_0^1 B \) to achieve notational economy. The symbolism \(\text{MN}(0, V) \) signifies the mixture normal distribution \(\text{MN}(0, V) = \int_{V > 0} N(0, V) \, dP(V) \). Finally, all limits given in this paper are taken as the sample size \(T \) tends to \(\infty \) unless otherwise stated.

2. Some preliminary discussion of the problem

In this section we present some informal arguments that use a simple model to illustrate the problems discussed in the paper. We consider the regression

\[y_t = \beta' x_t + u_t, \]

(1)

where \(\{u_t\} \) is a stationary time series, and \(\{x_t\} \) is a vector time series which is either \(I(1) \) or \(I(0) \). In either case, we allow for endogeneity in the regressors: when \(x_t \) is \(I(0) \), some elements of \(x_t \) can be correlated with \(u_t \), and when \(x_t \) is \(I(1) \), some elements of \(\Delta x_t = u_{2t} \) can be correlated with \(u_{0t} \) for some \(s \). For the time being, in the \(I(1) \) case we assume that \(x_t \) is a full rank \(I(1) \) process, i.e. the number of unit roots in the stochastic process \(x_t \) is equal to the dimension of \(x_t \) (and thus the elements of \(x_t \) are not cointegrated). When \(y_t \) and \(x_t \) are \(I(1) \), Eq. (1) is usually called a cointegrating regression.

In the \(I(0) \) case, the use of OLS generally yields an inconsistent estimator of \(\beta \), and the instrumental variable (IV) method is commonly employed to deal with this problem. In order to apply IV methods successfully, we need valid instruments, and we can test the validity of the instruments that we use by following the approach of Sargan (1958, 1959). On the other hand, nowadays it is well known that OLS estimators are \(T \)-consistent in cointegrating regressions, though they do involve nuisance parameters and are not asymptotically unbiased. In the \(I(1) \) case, as in Phillips and Loretan (1991), the asymptotic distribution of the OLS estimator of \(\beta \) (denoted by \(\hat{\beta} \), say) is given by

\[T(\hat{\beta} - \beta) \xrightarrow{d} \left(\int_0^1 B_2 B_2^{-1} \right)^{-1} \left(\left[\int_0^1 B_2 \, d(B_0 + \omega_{02} \Omega_{22}^{-1} B_2) \right] + \delta \right), \]

(2)

where \(\delta = \sum_{t=0}^{\infty} E(u_{0t} u_{2t}) \) and \(B_2 \) is the 'long-run variance' matrix of \(u_t = (u_{0t}, u_{2t})' \) and is partitioned conformably. Observe that the second term in the parentheses involving the coefficient \(\omega_{02} \Omega_{22}^{-1} \) and the term involving \(\delta \) both induce bias, asymmetry and nuisance parameters (i.e. \(\Omega_{22}, \omega_{02}, \delta \)) into the limit distribution.

Several ways have been proposed to resolve these problems: see Johansen (1988), Park (1992), Phillips (1991b,c), Phillips and Hansen (1990), Phillips and Loretan (1991), Saikkonen (1991) and Stock and Watson (1992). Among them, the fully modified (FM) estimator proposed by Phillips and Hansen seems...
to be particularly useful in practice because it enables investigators to run regressions much like least squares that yield asymptotically efficient estimates of the cointegrating coefficients. The procedure eliminates nuisance parameters in the following way. First, we modify \(y_t \) using the transformation \(\tilde{y}_t = y_t - \hat{\omega}_{02}\hat{\Omega}_{22}^{-1} \Delta x_t \) and the error in (1) also, giving \(\hat{u}_t = u_t - \hat{\omega}_{02}\hat{\Omega}_{22}^{-1} \Delta x_t \). This is a correction for endogeneity. Next we construct a serial correlation correction term \(\tilde{\delta}^+ \), which is a consistent estimator of \(\delta^+ = \sum_{k=0}^{\infty} E(u_{t+k}^+ u_{t+k}^-) \) where \(u_t = u_t - \omega_{02}\Omega_{22}^{-1} \Delta x_t \). The FM estimator combines these two corrections in the least squares regression formula and is given by

\[
\bar{\beta} = \left(\sum_{1}^{T} x_t x_t' \right)^{-1} \left(\sum_{1}^{T} x_t \tilde{y}_t' - T \tilde{\delta}^+ \right),
\]

which is asymptotically median unbiased and nuisance parameter free.

Now, what if we allow for cointegration in the regressor variables \(x_t \)? This means that there are some stationary components in \(x_t \), and therefore, a natural strategy might be to use IV estimators for the stationary components and FM estimators for the I(1) components. If the cointegrating vectors for \(x_t \) were known, or the location of the unit roots were specified a priori, the stationary components and the I(1) components would be identified and the above strategy would clearly work. However, such vectors are usually unknown and need to be determined empirically unless prior economic knowledge is sharp and very informative. Moreover, a simple and important example in practice is the case where we do not know whether some individual regressors are either I(1) or I(0). If some of the regressors are I(0), we sometimes say that the regressors as a whole are ‘trivially cointegrated’, since any vector which puts non-zero weights on the I(0) components and zero weights on the I(1) components is a cointegrating vector. In the following, we explore a methodology that allows us to deal with systems of this type that have possibly non-stationary processes without using prior information about the location of unit roots or even the full dimension of the cointegration space.

3. The model, conditions and a useful lemma

Let \(\{y_t\} \) be an \(n \)-dimensional time series generated by

\[
y_t = Ax_t + u_t,
\]

where \(A \) is an \(n \times m \) coefficient matrix and \(x_t \) is an \(m = (m_1 + m_2) \)-dimensional vector of cointegrated regressors specified as follows:

\[
H_1^t x_t = x_{1t} = u_{1t}, \quad m_1 \times 1,
\]

(4a)

\[
H_2^t \Delta x_t = \Delta x_{2t} = u_{2t}, \quad m_2 \times 1,
\]

(4b)
where $H = (H_1, H_2)$ is an $m \times m$ orthogonal matrix. Using the rotations prescribed in (4), Eq. (3) can be rewritten as

\[y_t = A_1 x_{1t} + A_2 x_{2t} + u_{0t} \]

\((3') \)

where $A_1 = AH_1$ and $A_2 = AH_2$. We let z_t denote a q-vector of instruments driven by

\[G_1' z_t = z_{1t} = u_{21t} : q_1 \times 1, \]

\((5a) \)

\[G_2' \Delta z_t = \Delta z_{2t} = u_{22t} : q_2 \times 1. \]

\((5b) \)

We will use the notation $u_{21} = \Delta x_t$ and $u_{22} = \Delta z_t$. This partition of the regressors and the instruments will be instructive in the development of our theory. However, as will become clear neither our methods nor our results are contingent on the knowledge of or the nature of these partitions.

We now impose assumptions on the random variables $w_t = (w_{0t}, u_{1t}, u_{21t}, u_{22t})$ that drive the system (3)–(4) and the instrument set z_t.

Assumption EC (Error condition)

(a) $\{w_t\}^\infty$ is fourth-order stationary with absolutely summable fourth cumulant function,

(b) $E(w_t) = 0$,

(c) $E|w_t|^\beta < \infty$ for some $4 \leq \beta < \infty$.

(d) $\{w_t\}^\infty$ is either ϕ-mixing with mixing coefficients ϕ_m such that $\sum_{m=1}^\infty m^{-1/\beta} \phi_m^m < \infty$ or α-mixing with mixing coefficients α_m such that $\sum_{m=1}^\infty \alpha_m < \infty$.

(e) the long-run variance matrix of w_t, $\Omega = E(w_{it} w_{it}') = \sum_{i=-\infty}^{\infty} \Gamma(i)$, say is positive definite.

Assumptions EC(a)–EC(c) imply that the regressor x_t is cointegrated and that each column of H_1 is its cointegrating vector. Assumption EC(e) also ensures that z_{2t} is $I(1)$, but it excludes cointegration among the elements of z_{2t} and between x_{2t} and z_{2t}. It also excludes the possibility of ‘multicointegration’ of y_t and x_{2t} as defined by Granger and Lee (1989). The assumption of no cointegration between x_{2t} and z_{2t} will be relaxed later on in the paper. For subsequent use, we decompose the long-run covariance matrix given in (e) as follows:

\[\Omega = \Sigma + \Lambda + \Lambda', \]

where $\Sigma = E(w_{it} w_{it}')$ and $\Lambda = \sum_{i=1}^\infty E(w_{i+1} w_{i+1}') = \sum_{i=-\infty}^\infty \Gamma(i)$; and we define the ‘one-sided long-run covariance matrix’

\[\Lambda = \sum_{i=0}^\infty E(w_{i+1} w_{i+1}') = \sum_{i=0}^\infty \Gamma(i). \]
Under Assumption EC, a multivariate invariance principle (IP) for \(\{w_i\} \) holds, viz.

\[
T^{-1/2} \sum_{i=1}^{T} w_i \overset{d}{\rightarrow} B(r) \equiv BM(\Omega), \quad 0 \leq r \leq 1,
\]

as shown in Phillips and Durlauf (1986). We partition \(B \) and \(\Omega \) conformably with \(w_i \) as

\[
B(r) = \begin{bmatrix}
B_0(r) \\
B_1(r) \\
B_2(r) \\
B_2(r)
\end{bmatrix}, \quad \Omega = \begin{bmatrix}
\Omega_{00} & \Omega_{01} & \Omega_{02} & \Omega_{03} & \Omega_{04} \\
\Omega_{10} & \Omega_{11} & \Omega_{12} & \Omega_{13} & \Omega_{14} \\
\Omega_{20} & \Omega_{21} & \Omega_{22} & \Omega_{23} & \Omega_{24} \\
\Omega_{30} & \Omega_{31} & \Omega_{32} & \Omega_{33} & \Omega_{34} \\
\Omega_{40} & \Omega_{41} & \Omega_{42} & \Omega_{43} & \Omega_{44}
\end{bmatrix},
\]

and define the \(nq_1 \)-vector

\[
\phi_{z_1} = u_0 \otimes z_1.
\]

We now state some additional conditions that are important for the analysis of the stationary components of the model.

Assumption IV (Instrument validity conditions)

(a) \(E\phi_{z_1} = E(u_0 \otimes z_1) = 0 \) for all \(t \) (orthogonality condition);
(b) \(E[x_1z_1^\prime] = K_{x_1} \) is of full row rank (rank \(m_1 \)) (relevance condition);
(c) \(E[z_1z_1^\prime] = M_{z_1} \) is non-singular (non-singular second moment);
(d) \(\{\phi_{z_1}\}^\infty \) satisfies the same conditions as Assumption EC(b)–EC(e) (regularity conditions);
(e) \(m_2 \leq q_2 \) (order condition on \(I(1) \) instruments).

In conventional IV estimation, we choose instruments satisfying (a) whose dimension is equal to or greater than the dimension of the regressors. In our case, we wish to maintain \(m_1 \leq q_1 \), which is a necessary condition for part (b), but \(m_1 \) is unknown a priori. Therefore, in the above model specification the set of instruments is required to be 'large enough' so that \(m \leq q \) and the necessary order condition in terms of dimension is satisfied. Part (d) (given part (a)) allows for the use of a central limit theorem (CLT) with respect to \(\phi_{z_1} \). Other sets of conditions, are possible in place of (d), of course, and are explored elsewhere, e.g. in White (1984). Part (e) is a non-stationary counterpart of part (b). Note that it suffices to impose an 'order condition' here, since the sample moment matrix \(T^{-2} \sum x_2z_2^\prime \) converges in distribution to a random matrix that is of full rank almost surely as long as both \(x_2 \) and \(z_2 \) carry full rank stochastic trends. This point arises from the asymptotic theory of spurious regression and has been shown by Phillips and Hansen (1990, Lemma A3).
Define the data matrices $U_0 = [u_{01}, ..., u_{0T}]', X = [x_1, ..., x_T]',$ and $Z = [z_1, ..., z_T]'.$ Similarly, we write $XH = [X_1, X_2] = X_H$ and $ZG = [Z_1, Z_2] = Z_G,$ where the subscripts 'H' and 'G' signify that rotations by H and G have been performed. We also define the $nq \times nq$ matrix $S_{i_1} = \sum_{i=-\infty}^{+\infty} R_{i_1}(i),$ where

$$R_{i_1}(j) = E(u_{0j}u_{0j+i}' \otimes z_{i_1}z_{j+i}).$$

Then, under mild regularity conditions such as Assumption IV (a) and IV (d), we have the central limit theorem (CLT)

$$T^{-1/2}U_0'Z_1 \xrightarrow{d} N(0, S_{i_1}),$$

(8)

where we use the conventional normal random matrix notation (see, for example, Muirhead, 1982). Next define a sequence of $n \times n$ random matrices $\{C_T\},$ which will be used to illustrate some properties that are common to all IV estimators in this paper, by

$$C_T = (U_0'P_2 - \Psi_T)X(X'P_2X)^{-1}.\quad (9)$$

The matrix C_T represents a generic form of the matrix of IV estimation errors for the parameter $A.$ In (9), Ψ_T is an $n \times T$ random matrix of abstract correction terms. It is convenient for us now to impose the following conditions on the asymptotic behavior of Ψ_T and later we will justify them under more primitive conditions.

Condition CT (Correction term conditions)

(C1) $\Psi_TX_1 = o_p(\sqrt{T})$

(C2) $T^{-1}\Psi_TX_2 \xrightarrow{d} \Psi_2,$ say

where Ψ_2 may be a random matrix.

The following lemma is fundamentally important in our subsequent theory.

Lemma 3.1. Suppose Assumptions EC, IV and Condition CT hold. Then

(a) $\sqrt{T}C_TH_1 = \sqrt{T}U_0'P_2X_1(X_1'P_2X_1)^{-1} + o_p(1)$

$$\xrightarrow{d} N(0, J_z, S_{i_1}'),$$

(b) $TC_TH_2 = T(U_0'P_2X_2^2X_2X_2'P_2X_2^{-1} + o_p(1)$

$$\xrightarrow{d} \left(\int_0^1 dB_1 B_1^2 + d_{23} \left(\int_0^1 B_2 B_3^2\right)^{-1} \int_0^1 B_2 B_3^2 - \Psi_2\right) \times \left(\int_0^1 B_2 B_2^2\right)^{-1}.$$
$C_T H_1$ is asymptotically equivalent to the estimation error that obtains when we apply the conventional IV estimator to a stationary regression model with the regressor vector x_1, and the instrumental variable vector z_1. Part (b) of Lemma 3.1 shows that $C_T H_2$ has the usual asymptotics of a cointegrating IV regression with the additional term Ψ_2. In sum, if we construct a correction term Ψ_T so that it satisfies (C1) and (C2) and yields a limit matrix Ψ_2 that correctly adjusts the asymptotics in part (b), then the limit behavior of C_T and its various functionals may become nuisance parameter free and have some other good properties like asymptotic median unbiasedness and possibly even optimality. In fact, the FM-IV estimator and its variants that are proposed in this paper are designed so that their correction terms satisfy the conditions just mentioned. The lemma is helpful in understanding the key elements in and the motivation behind the construction of these estimators. We will use it frequently in the analysis that follows.

4. Estimation theory

This section studies the estimation of the model proposed in Section 3, allowing for the regressors to be cointegrated and to be correlated with the errors. Cointegration among the instruments is also allowed for. In the construction of the estimator, we use the vector of instruments z_1, consisting of both stationary and non-stationary components.

The following formula defines the FM-IV estimator of the coefficient matrix A in (3)

$$\tilde{A} = (\tilde{Y}' Z - T \tilde{D}_{0z}(Z'Z)^{-1} Z'X(X' P_z X)^{-1}$$

$$= [Y' P_z - \tilde{D}_{0z}\tilde{U}_{0z}^{-1} U_{0z} P_z - T \tilde{D}_{0z}(Z'Z)^{-1} Z'X(X' P_z X)^{-1}$$

$$= [Y' P_z - \tilde{D}_{0z}\tilde{U}_{0z}^{-1} U_{0z} P_z - T \tilde{D}_{0z}(Z'Z)^{-1} Z'X(X' P_z X)^{-1}$$

where $\tilde{Y}' = Y' - \tilde{D}_{0z}\tilde{U}_{0z}^{-1} U_{0z}$, $\tilde{D}_{0z} = D_{0z} - \tilde{D}_{0z}\tilde{U}_{0z}^{-1} D_{0z}$. \tilde{D}_{0z} denotes the estimate of the one-sided long-run covariance between u_0 and u_z. We use the subscript 'a' in these formula to signify elements that correspond to u_{zt} and u_z, taken together. Note that in the definition (10), the second term in the square bracket is the correction term for the endogeneity of the non-stationary instrument z_2 and the regressor x_1, while the third term corrects for serial correlation.

Before studying the asymptotics of the FM-IV estimator, we will prove two lemmas which are useful in evaluating the asymptotic contribution of the correction terms in our estimators. In these lemmas, the long-run covariance matrices can be estimated by the use of kernel estimators or smoothed periodogram estimators. Kernel estimators of the long-run covariance and one-sided long-run covariance matrices between $\{u_{zt}\}$ and $\{u_{zt}\}$ take the following forms:

$$\tilde{\Omega}_{tt} = \sum_{j=-\tau+1}^{\tau-1} w(j/K)\tilde{\gamma}_{u_{zt}}(j), \quad \tilde{\Delta}_{uu} = \sum_{j=0}^{\tau} w(j/K)\tilde{\gamma}_{u_{zt}}(j).$$

(11)
where \(w(\cdot) \) is a kernel function, \(\tilde{\Gamma}_{u_t u_t}(f) = T^{-1} \sum_{j=-J}^{J} \tilde{u}_{t+j} \tilde{u}_{t+j}' \) and \(K \) is a lag truncation or bandwidth parameter satisfying \(K = o(T^{1/2}) \) as \(T \to \infty \). In some cases (e.g. for the quadratic spectral estimator) the kernel function \(w(\cdot) \) is non-zero outside the interval \([-1, 1]\) and then there is no truncation in the summation in (11). Suppose \(r(>0) \) is the largest integer such that

\[
\lim_{u \to 0} \frac{1 - w(u)}{|u|^r} < \infty. \tag{12}
\]

This implies that

\[
\lim_{u \to 0} \frac{d w(u)/du}{u^{r-1}} = w^{(r)} < \infty. \tag{13}
\]

In fact, \(r \) is what Parzen (1957) calls the characteristic exponent of the kernel \(w(\cdot) \) using the expression (12). For our purposes expression (13) turns out to be the more useful. We will be concerned mainly with kernels whose characteristic exponent \(r = 2 \). Among these we have the following (noting that the Tukey–Hanning does not satisfy the positivity requirement, which is desirable but not essential):

- **Parzen**: \(w(x) = \begin{cases} 1 - 6x^2 + 6|x|^3 & \text{for } 0 \leq |x| \leq 1/2, \\ 2(1 - |x|)^3 & \text{for } 1/2 < |x| \leq 1, \\ 0 & \text{otherwise}, \end{cases} \)

- **Tukey–Hanning**: \(w(x) = \begin{cases} (1 + \cos(\pi x))/2 & \text{for } |x| \leq 1, \\ 0 & \text{otherwise}, \end{cases} \)

- **Quadratic spectral**: \(w(x) = \frac{25}{12 \pi^2 x^2} \left(\frac{\sin(6\pi x/5)}{6\pi x/5} - \cos(6\pi x/5) \right). \)

In practice we need to estimate the unknown sequence \(\{u_t\} \) to construct estimators of long-run covariance matrices such as \(\Omega_{00} \). Conventional IV estimators and residuals defined by

\[
\tilde{A} = Y'P_x(X'P_xX)^{-1} \quad \text{and} \quad \tilde{u}_{0t} = y_t - \tilde{A}x_t \tag{14}
\]

can be used for this purpose. \(\tilde{A} \) is consistent for \(A \) under Assumptions EC and IV, since the estimator \(\tilde{A}_1 = \tilde{A}H_1 \) is \(\sqrt{T} \)-consistent for \(A_1 \) and the estimator \(\tilde{A}_2 = \tilde{A}H_2 \) is \(T \)-consistent for \(A_2 \). It is straightforward to justify these consistency results using Lemma 3.1, since \(\gamma_T = 0 \) in this 'naive' IV regression. In finite samples there may, of course, be some advantage to using a third stage FM-IV estimator in which the estimates of long-run covariance matrices like \(\Omega_{00} \) are refined by using the residuals from the second stage FM-IV regression to estimate \(u_{0t} \). This is a matter that will be explored in subsequent simulation experiments with our methods and reported elsewhere.
Finally, we assume

Assumption LR (Long run covariance matrix estimation). Any of the Parzen, Tukey–Hanning or the quadratic spectral (QS) kernel estimators are used in the estimation of the long-run covariance matrices. The covariance functions $\Gamma_{u_{it}}(\cdot)$ and $\Gamma_{u_{it}}(\cdot)$ satisfy the summability condition

$$\sum_{j=-\infty}^{\infty} j ||\Gamma(j)|| < \infty$$ \hspace{1cm} (15)

where $u_h = (u_{2t}, u_{2t})'$ and $u_g = (u_{1t}', u_{2t})'$. The parameter K in (11) grows at the rate of T^k for some $k \in (1/4, 2/3)$.

The kernel estimators specified in Assumption LR are all commonly used in long-run covariance matrix estimation. The summability condition (15) allows for a wide range of time series including quite general finite-order stationary vector ARMA specifications for the error processes. Under stationary ARMA specifications, of course, $\Gamma(j)$ decays exponentially and (15) is automatic.

Now we postulate an additional condition concerning the unknown stationary component $\{z_{1t}\}$:

Assumption NF (No feedback). $E[u_{it+j} \otimes z_{1t}] = 0$ for all $j \geq 1$.

Assumption NF does not seem restrictive in empirical applications, since it holds in two situations where conventional instrumental variable methods are most frequently used. First, the assumption is trivially satisfied when all the stationary instruments are strictly exogenous. Second, the hypothesis of rational expectations will usually entail that there is no feedback from the regressors or instruments to the errors. In typical rational expectations models components of stationary variables involving past information are orthogonal to current errors, and this fact provides the opportunity for instrumental variables estimation of rational expectation models. Research along these lines was initiated by McCallum (1979) and extended by Hansen and Singleton (1982) and many others, particularly to the estimation of rational expectations models with future expectations. In the case of non-stationary models, the rational expectations assumption imposes restrictions on the stationary linear combinations of non-stationary variables, i.e. the cointegrated variables, as pointed out in Hansen and Sargent (1991). In our model, the stationary linear combinations of non-stationary instrumental variables are denoted by z_{1t}, and their past values must be orthogonal to the current stationary error u_{0t}. This implies Assumption NF.

Define $u_{hi} = (\Delta u_{1t}, u_{2t})'$ (= $\Delta x_{hi} = h' u_{hi}$) and $z_{hi} = (\Delta u_{2t1}', u_{2t2})'$ (= $\Delta z_{hi} = G' u_{hi}$), where we use the subscript 'h' and 'g' to denote elements corresponding to $\{\Delta u_{1t}\}$ and $\{u_{2t}\}$ $\{(\Delta u_{2t1})\}$ and $\{u_{2t2}\}$) taken together. The following lemma
describes the asymptotic behavior of the component elements of the FM-IV estimator.

Lemma 4.1. Under Assumptions EC, IV and LR

(a) \(\hat{\Delta}_{00}\hat{\Delta}_{hh}^{-1} \left(T^{-1} U'_0 Z_G - \hat{\Delta}_{hh} \right) = [o_p(1/\sqrt{T}) : \Omega_{02} \Omega_{22}^{-1} N_T + o_p(1)] \).

(b) \((Z'_G Z_G)^{-1} Z'_G X_1 = \begin{bmatrix} (Z'_1 Z_1)^{-1} Z'_1 X_1 + O_p \left(\frac{1}{T} \right) \\ O_p \left(\frac{1}{T} \right) \end{bmatrix} \),

\((Z'_G Z_G)^{-1} Z'_G X_2 = \begin{bmatrix} O_p(1) \\ M_T \end{bmatrix} \),

where \(N_T \xrightarrow{d} \int_0^1 dB_2 B'_2 \), and \(M_T \xrightarrow{d} \left(\int_0^1 J_{01} B_2 B'_2 \right)^{-1} \int_0^1 B_2 B'_2 \).

Lemma 4.2. Under Assumptions EC, IV, LR and NF,

(a) \(\hat{\Delta}_{00}(Z'_G Z_G)^{-1} Z'_G X_1 = T^{-1} \hat{\Delta}_0 P X_1 + o_p(1/\sqrt{T}) = o_p(1/\sqrt{T}) \),

\(\hat{\Delta}_{00}(Z'_G Z_G)^{-1} Z'_G X_2 \xrightarrow{d} \Delta_{02} \left(\int_0^1 B_2 B'_2 \right)^{-1} \int_0^1 B_2 B'_2 \),

(b) \(\hat{\Delta}_{00} \hat{\Delta}_{hh}^{-1} \left(\frac{1}{2} \Delta X'_P P X_i - \hat{\Delta}_{hh}(Z'_G Z_G)^{-1} Z'_G \right) X_1 = o_p(1/\sqrt{T}) \), and

(c) \(\hat{\Delta}_{00} \hat{\Delta}_{hh}^{-1} \left(\frac{1}{2} \Delta X'_P P X_i - \hat{\Delta}_{hh}(Z'_G Z_G)^{-1} Z'_G \right) X_2 \xrightarrow{d} \Omega_{02} \Omega_{22}^{-1} \int_0^1 dB_2 B'_2 \),

\(\left(\int_0^1 B_2 B'_2 \right)^{-1} \int_0^1 B_2 B'_2 \).

With these results in hand we now turn to study the asymptotic behavior of the FM-IV estimator \(A \). We rotate coordinates in \(\mathbb{R}^m \) by the orthogonal matrix \(H \) that was introduced in Section 3 so that we can analyze the component matrices \(\hat{A}_1 = \hat{A} H_1 \) and \(\hat{A}_2 = \hat{A} H_2 \) separately. The asymptotic behavior of these two components is quite different as the following theorem shows.

Theorem 4.3. Under Assumptions EC, IV and LR,

(a) \(\sqrt{T}(\hat{A} - A)H_1 \xrightarrow{d} N(0, J_2 S_1 J'_1) \)

(b) \(T(\hat{A} - A)H_2 \xrightarrow{d} MN(0, \Omega_{00} \otimes \left(\int_0^1 B_2 B'_2 \right)) \).

Remarks. (a) In the statement of Theorem 4.3 we use the following notation for limit processes that are adjusted for their conditional means. For the partitioned limit process \(B = (B', B'') \) we define the process \(B_{1,2} = B_1 - \Omega_{12} \Omega_{22}^{-1} B_2 \equiv BM(\Omega_{11,2}) \), which is independent of the Brownian motion \(B_2 \). We use the subscript 'b' to signify elements corresponding to \(\nu_1 \) and \(\nu_2 \) jointly. Note that \(B_2 \), which appears in part (b) and which was defined in Lemma 3.1, is the projection in \(L_2[0, 1]^m \) of \(B_2 \) onto the subspace spanned by the elements of \(J_m \otimes B' \).
(b) Theorem 4.3 shows some of the advantages of the FM-IV estimation procedure. The estimator \hat{A} is \sqrt{T}-consistent and its limit distribution is normal in the direction of H_1, as a result of the use of valid instruments. At the same time, in the direction of H_2 the estimator is T-consistent and its limit distribution is mixed normal, symmetric and median unbiased, with nuisance parameters (other than scale) being eliminated by the FM correction terms.

Another interesting and practically important situation which violates Assumption EC(e) is one in which the $I(1)$ instruments and the regressors are cointegrated. This case happens, for example, when the set of non-stationary instrumental variables includes lagged values of regressors. Such instruments are commonly used in instrumental variables estimation and in the estimation of rational expectation models. Regressors and instruments that are found by lagging regressors are naturally cointegrated if the regressors are stochastically non-stationary. Fortunately, this case can be treated without any changes in the above definitions and only involves a minor change in the asymptotic properties of the estimators. To illustrate, suppose that the $I(1)$ processes \{x_{2t}\} and \{z_{2t}\} are jointly driven by the following cointegrated system:

$$F_1' \left(\begin{array}{c} x_{2t} \\ z_{2t} \end{array} \right) = u_{c_1}, \quad F_2' \left(\begin{array}{c} x_{2t} \\ z_{2t} \end{array} \right) = u_{c_2},$$

where \{u_{c_1}\} and \{u_{c_2}\} are ℓ_1- and ℓ_2-dimensional and $F = (F_1, F_2)$ is an $\ell \times \ell$ orthogonal matrix with $\ell = \ell_1 + \ell_2 = m_2 + q_2$. We continue to require that Assumption EC holds with $w_t = (u_0, u_{21}, u_{22}, u_{21}, u_{22})'$ now replaced by $w_t = (u_0, u_{21}, u_{22}, u_{c_1}, u_{c_2})'$. This assumption implies that each column of F_1 is a cointegrating vector of \{$(x_{2t}, z_{2t})'$\}.

With these adjustments, part (a) of Theorem 4.1 remains valid without any changes, while part (b) holds with subscripts ‘b’ replaced by ‘c2’. The latter result is a direct consequence of Lemma 4.2, though we need three coordinate rotations to achieve it; rotation by H in \mathbb{R}^m to decompose \{x_t\} (into \{x_{1t}\} and \{x_{2t}\}), rotation by G in \mathbb{R}^m to decompose \{z_t\} (into \{z_{1t}\} and \{z_{2t}\}), and rotation by F in \mathbb{R}^{ℓ} to decompose \{$(x_{2t}, z_{2t})'$\} into its $I(0)$ and $I(1)$ components.

5. Efficient estimation

In the analysis of systems with cointegrated regressors in the previous section, we have shown that the FM-IV (and FM-IV/CI) estimators of the non-stationary components of the model are asymptotically median unbiased and the limit distributions are nuisance parameter free (up to scale), as a result of the ‘fully modified regression’ methodology. However, as far as the stationary components of the model are concerned, the FM-IV procedure proposed above uses the standard IV estimation method. So there is the potential of efficiency gain with respect to the stationary components, for example by the use of a
GLS-type transformation. GLS-type transformations have not been a popular tool in the recent literature of non-stationary time series analysis, since in general the effect of a GLS-type transformation asymptotically vanishes and no efficiency gain is to be expected, as shown in Phillips and Park (1988). In our model, however, both stationary and non-stationary components are included in the regressors and they are not identified a priori. Thus, it seems worthwhile applying GLS-type transformations to the whole model including its non-stationary components to see if an efficiency gain is realized for the coefficients of the stationary components.

In the following we suggest the use of two well-known approaches to obtain an efficiency gain by data transformations. The first corresponds to the GMM procedure with optimal choice of the ‘distance matrix’ proposed by Hansen (1982) for non-linear estimation problems. The second is the GIVE procedure, originally proposed by Sargan (1958, 1959). Also, following Bowden and Turkington (1984), one may call the former the ‘IV-OLS analog’ and the latter the ‘IV-GLS analog’. The former is valid under fairly general assumptions upon the instruments, such as those that are implied by usual rational expectations (RE) models with predetermined but not exogenous instruments. The latter method can be relatively efficient over the former asymptotically, as in the case where the instruments are strictly exogenous. The limit theory of estimators of the non-stationary components of the model is not affected by either transformation.

5.1. FM–GMM (FM–IV–OLS analog) estimator

Here by the term ‘GMM’ we mean a linear version of the GMM estimator with an ‘optimal’ choice of the distance matrix. However, unlike conventional GMM, we need to deal with non-stationarity, both in the regressors and the instruments. For exposition of this case, we will use the same model as that considered in Section 4.1, i.e. the model specified as (3)–(5), with Assumptions EC and IV. To simplify our presentation in what follows we use capital script letters to represent the Kronecker products of the $n \times n$ identity matrix I_n with matrices of observations. For example, we use $\mathcal{Z} = (I_n \otimes X)$, $\mathcal{Z} = (I_n \otimes Z)$, and so on.

We define the FM–GMM estimator $\tilde{\alpha}_{GMM}$ as follows:

$$\text{vec} \tilde{\alpha}_{GMM} = (\mathcal{Z}' \mathcal{Z}^{-1} \mathcal{Z}' \mathcal{Z})^{-1} \mathcal{Z}' \mathcal{Z}^{-1} \text{vec}(\hat{\beta}' Z - T \hat{\beta}_{\hat{q}}').$$

where the distance matrix S_{2T} (rotated by G) is partitioned as

$$G'S_{2T}G = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} nq_1 \\ nq_2 \end{pmatrix}.$$
and each block must satisfy the following conditions:

\[S_{1 T} \overset{p}{\rightarrow} S_{1 T} = \sum_{i=\infty}^{\infty} R_{1 i}(i), \quad (17a) \]

\[S_{1 T} = (S_{1 T})' = O_p(1), \quad T^{-1} S_{1 T} \overset{p}{\rightarrow} \Omega_0 \otimes \int_0^1 B_2 B_2'. \quad (17b) \]

The notation used here is analogous in form to our earlier notation. However, the use of the affix ‘ \(\sim \)’ in place of ‘ \(\overset{p}{\rightarrow} \)’ indicates that the estimate of the unknown process \(\{u_{10}\} \) is not obtained through a naive IV regression, but is instead the GMM residual \(\tilde{u}_{10 \text{GMM}} = y_t - \tilde{A}_{10 \text{GMM}} x_t \), where

\[
\begin{align*}
\text{vec } \tilde{A}_{10 \text{GMM}} &= (\mathcal{F}^\prime \mathcal{F} S_{1 T}^{-1} \mathcal{F}^\prime \mathcal{F})^{-1} \mathcal{F}^\prime \mathcal{F} S_{1 T}^{-1} \text{vec}(Y'Z).
\end{align*}
\]

In the literature, several techniques to obtain the optimal distance matrix for the GMM estimators have been proposed, and we can use these in the FM-GMM procedure. The first method uses the spectral estimator

\[
S_{1 T} = \frac{1}{2M} \sum_{k=-M+1}^{M-1} \hat{f}_{\omega_{k0}} (\frac{nk}{M}) \otimes \hat{f}_{\omega} (\frac{-nk}{M}),
\]

where \(M = o(T^{1/2}) \) as \(T \to \infty \). In the formula (19) the spectral density estimates are of the form

\[
\hat{f}_{\omega}(\lambda) = \frac{1}{2\pi} \sum_{j=-T+1}^{T-1} w(j/K) \hat{F}_{\omega}(j)e^{ij\lambda},
\]

where the sample covariance matrix is

\[
\hat{F}_{\omega}(j) = \frac{1}{T} \sum_{t=1}^{T-j} \hat{c}_{t+j} b_t', \quad \hat{F}_{\omega}(-j) = \hat{F}_{\omega}(j), \quad 1 \leq j \leq T,
\]

the bandwidth parameter \(K \) is as before in (11), and the lag window \(w(\cdot) \) satisfies standard conditions (see, for example, Phillips, 1991c). By following the arguments in Hannan (1963) and Phillips (1991c) we can show that the spectral estimator (19) satisfies (17a) and (17b), respectively. A second method is to estimate a VAR model for the error process \(\{u_{10}\} \) and use it to construct an estimator of the long-run covariance matrix of \(\{u_{10}\} \). This approach will be pursued later in the section on the ‘FM-GIVE’ estimator. In either method, we can substitute the estimated process \(\{\tilde{u}_{10}\} \) in (11) for the unobserved sequence \(\{u_{10}\} \), without affecting the asymptotic behavior of these estimators.

The following lemma describes the asymptotic behavior of the stationary part of the correction term in (18).
Lemma 5.1. Under Assumptions EC, IV, LR and NF

$$\begin{align*}
\mathcal{X}'_1 \mathcal{X}^{-1} \mathcal{S}_1' \text{vec}(\widetilde{A}_0) &= T^{-1} \mathcal{X}'_1 \mathcal{X}^{-1} \mathcal{S}_1' \text{vec}(\widetilde{U}'_0) + o_p(1/\sqrt{T}) \\
&= o_p(1/\sqrt{T}).
\end{align*}$$

Our next result gives the limit theory for the FM-GMM estimator:

Theorem 5.2. Under Assumptions EC, IV, LR and NF

$$\sqrt{T}(\widetilde{A}_{\text{GMM}} - A)_{H_1} \xrightarrow{d} N (0, [\mathcal{X}_2, S_1^{-1} \mathcal{X}'_1]^{-1}),$$

where $\mathcal{X}_2 = [I_n \otimes I_{T_2}]$. Further, $\widetilde{A}_{\text{GMM}}H_2$ is asymptotically equivalent to $\widetilde{A}H_2$, which is the FM-IV estimator of $A_2 = AH_2$.

If we compare these results with those of the FM-IV estimator given in Theorem 4.3, the advantage of the FM-GMM estimator should be clear. For the coefficient of the stationary components of the model, we obtain an efficiency gain in estimation as a result of the 'optimal' choice of distance matrix. This follows from the well known inequality $[\mathcal{X}_1, S_1^{-1} \mathcal{X}'_1]^{-1} \leq J_n S_n J_n'_{11}$ between the asymptotic covariance matrix of the two IV estimators. As far as the non-stationary components are concerned, the two estimators of these coefficients are asymptotically equivalent, because the effects of the GMM transformations of the integrated processes cancel out, just as the effects of GLS transformations cancel out in regressions with full rank integrated processes (as shown in Phillips and Park, 1988).

5.2. FM-GIVE (FM-IV-GLS analog) estimator

The FM-GMM estimator considered in the two last subsections is designed to incorporate an asymptotically optimal choice of the 'distance matrix'. Hence, we obtain an asymptotic efficiency gain over the FM-IV estimators of Section 4, at least with respect to the stationary components of the model. In the literature on IV estimation, there is extensive discussion of the choice of optimal instruments in the stationary time series context, and the generalized instrumental variable estimator (GIVE) was proposed as another approach – see Sargan (1988, Chapter 5.4) for a recent treatment. Roughly speaking, the GIVE procedure employs a GLS-type transformation to correct the data (including the instruments) for serial dependence in the equation errors. Some further efficiency gains (potentially even over GMM) may be obtained, though some additional assumptions are needed in order to justify the transformations. In the following, we show that efficient estimation of the stationary components of a possibly cointegrated non-stationary model can be achieved by the use of a fully modified version of the GIVE procedure. We shall assume strict exogeneity of the instruments in our development.
in this paper but in later work we will give an extension of the GIVE methodology that allows for the same setup as we have used in our GMM analysis. As one might expect from our earlier theory on IV and GMM, estimators of the non-stationary components are shown to be asymptotically invariant to the GLS transformations that underlie the GIVE procedure.

We will employ a parametric GLS transformation here, though it is probably worth pointing out that a non-parametric treatment is possible by the use of a corresponding technique in the frequency domain. (See Corbae et al. (1994) for the form of the frequency domain GIVE estimator and an application to non-stationary time series.) In this subsection and the next, we assume that the error term \(\{u_t\} \) is generated by a \(p \)th order vector autoregression (VAR).

Assumption VR. The stochastic process \(\{u_t\} \) is generated by the VAR\((p)\) model

\[
u_t = -\sum_{r=1}^{p} C_r u_{t-r} + \varepsilon_t,
\]

where \(\varepsilon_t \equiv iid(0, \Sigma_{\varepsilon}) \). If \(C(L) = I_n + \sum_{r=1}^{p} C_r L^r \), where \(L \) denotes the backshift operator, then the roots of \(|C(L)| = 0 \) are greater than one in absolute value.

The model can be rewritten in matrix form as

\[
U'_0 = -\sum_{r=1}^{p} C_r U'_{0-r} + E'.
\]

where \(U'_{0-r} \) and \(E' \) denote observation matrices of \(u_{0-r} \) and \(\varepsilon_t \), respectively. Now set the first \(r \) rows of \(U'_{0-r} \) to be vectors of zeros (i.e. the initial values are ignored) and define the \(T \times T \) matrix

\[
\mathcal{L} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & 0
\end{bmatrix},
\]

which is similar to the circulant matrix, but has its \((T, 1)\) element zero, not unity. Letting \(C_0 = I_n \), we have \(\sum_{r=0}^{p} C_r U'_0 \mathcal{L}_T = E' \), or

\[
\left(\sum_{r=0}^{p} (C_r \otimes \mathcal{L}_T^r) \right) \text{vec}(U'_0) = \text{vec}(E').
\]

Thus we have

\[
W_T \text{vec}(U'_0) \sim N(0, I_n T),
\]

where \(I_n \) is the \(n \times n \) identity matrix.
where
\[W_T = \left(\Sigma^{-1/2} \otimes I_T \right) \left(\sum_{r=0}^{p} C_r \otimes \mathcal{L}_T^{r} \right) = \sum_{r=0}^{p} C_r \otimes \mathcal{L}_T^{r} \text{ and } C_r = \Sigma^{-1/2} C_r. \]

Therefore, the non-sphericality in the model is removed by the premultiplication of the stacked observation matrices by \(W_T \). For later use, we let \(V_{0T} \) denote the \(nT \times nT \) covariance matrix of vec(\(U_0^{\prime} \)). (Then \(W_T^\prime W_T = V_{0T}^{-1} \).) In practice, we need estimates of \(W_T \) to achieve this GLS transform. To do so we first estimate \(\{u_0\} \) using some \(\sqrt{T} \)-consistent estimates of \(\hat{A} \) such as the naive IV estimator \(\hat{A} \) (see (11)). Then we estimate a \(p \)th order VAR process by OLS using \(\{\hat{u}_{0T}\} \) and plug the resulting estimates \(\hat{C}_r = \hat{\Sigma}_{r}^{-1/2} \hat{C}_r \) in the above definition of \(W_T \), giving \(\hat{W}_T \). In the following, we use the affix \(* \) to indicate premultiplication by \(\hat{W}_T \), e.g. \(\cdot^* = \hat{W}_T \cdot \).

In FM-IV estimation and FM-GMM estimation, one of the key requirements for the consistency of those methods is the (contemporaneous) orthogonality of \(\{u_0\} \) and \(\{z_{1T}\} \), viz. Assumption IV(a). This assumption holds, for instance, in rational expectation models where the instruments are predetermined but not necessarily exogenous, given a suitable choice of instruments. In the case FM-GIVE estimation, the orthogonality condition \(E[C(L)u_0 \otimes C(L)z_{1T}] = 0 \) is especially convenient. As is well known, this does not hold for predetermined (but not exogenous) instruments. However, it does hold for strictly exogenous instruments. Therefore we assume,

Assumption SE (Strict Exogeneity). \(\{z_{1}\} \) is strictly exogenous.

This is a strong version of Assumption NF. As explained at the beginning of this subsection, this assumption is stronger than necessary. In order to obtain consistency and the asymptotically normal and mixed normal results, only the strict exogeneity of the stationary instruments \(\{z_{1T}\} \) is needed. In fact, even this assumption may be relaxed to allow for lagged dependent variables as in Sargan (1988). We will continue to assume Assumption SE in this paper for the following reasons: (i) without the exogeneity of \(\{z_{1}\} \), the definition of the FM-GIVE is much more involved, and (ii) Assumption SE is the most convenient one in the case where we will consider cointegrated instruments. Extension of our approach to accommodate more general assumptions than SE will be included in later work.

For the model (3), we define the FM-GIVE estimator as follows:
\[
\text{vec} \tilde{A}_{\text{GIVE}} = (X^\prime P_X X^\prime)^{-1} X^\prime Z \left\{ (X^\prime X)^{-1} X^\prime \text{vec}(Y')^* - \text{vec}(\hat{\Theta}_0 \hat{\Theta}_e^{-1} (U_e'Z - T \hat{A}_e)(Z'Z)^{-1}) \right\}.
\]

It is possible to define the FM-GIVE estimator in other forms that are asymptotically equivalent and possibly computationally easier. We use the above definition
chiefly for conceptual convenience. Note that unlike the instruments, the regressors and the dependent variables, the correction terms in the FM-GIVE formula [given by the expression inside square brackets in (20)] are not transformed, since these terms are designed to persist asymptotically only in the estimator of the coefficients \(\beta_2 = AH_2 \) corresponding to non-stationary components. As stated before, GLS transformations usually cancel out as scale effects in the estimation of non-stationary components, and there is, therefore, no need to transform the correction terms. As far as feasible GLS estimation is concerned, any consistent estimates of \(\{u_n\} \) may be used as in the case of FM-GMM. The following theorem gives the limit theory for the FM-GIVE estimator.

Theorem 5.3. Under Assumptions EC, IV, LR, VR and SE,

\[
\sqrt{T}(\tilde{\beta}_{GIVE} - A)H_1 \xrightarrow{d} N\left(0, \left[\mathcal{M}_z, \mathcal{M}_z^{-1} \mathcal{M}_z'\right]^{-1}\right),
\]

where \(\mathcal{M}_z = \text{plim}(T^{-1} \mathcal{Z}_1' \mathcal{Z}_1) \) and \(\mathcal{M}_z' = \text{plim}(T^{-1} \mathcal{Z}_1' \mathcal{Z}_1) \). Further, \(\tilde{\beta}_{GIVE} H_2 \) is asymptotically equivalent to \(\tilde{\beta}_H \), the FM-IV estimator of \(\beta_2 = AH_2 \).

Potentially, the FM-GIVE estimator of \(\beta_1 = AH_1 \) can be more efficient than the FM-GMM estimator. In the conventional setting, namely systems in which only stationary variables appear, this is already known. White (1984), for instance, gives a detailed argument about the asymptotic relative efficiency of IV-GLS type estimators over IV-OLS type estimators and provides some sufficient conditions. In our case, if the instrumental variables \(\{z_{1t}\} \) appear as variables in the reduced form equations of \(\{x_t\} \), we can show the asymptotic relative efficiency of FM-GIVE over FM-GMM with respect to the estimation of \(\beta_1 \). The demonstration is essentially the same as that for the linear simultaneous equations model with serially dependent errors.

6. IV validity tests for overidentifying restrictions

It is well known that in IV estimation with stationary processes a test for the validity of instruments that was originally proposed by Sargan (1958, 1959) is available when the total number of orthogonality conditions exceeds the total number of unknown coefficients. Hansen (1982) extended this test to the case of the GMM estimator. The test is also known as a test of overidentifying restrictions or as an IV misspecification test. In what follows we will extend this IV testing principle to the FM-IV procedure and its various generalizations that we have studied earlier in this paper. Though we shall focus on the IV validity test in this paper, it is possible to test parameter restrictions using the FM-IV procedures, as shown in Kitamura (1994); see also Phillips (1995).
We strengthen Assumption NF slightly to accommodate a limit theory of our statistics.

Assumption NF²: \(\text{E}[u_{0t+j} \otimes (u'_{\tilde{z}_1}, u'_{\tilde{z}_2})] = 0 \) for all \(j \geq 1 \).

This assumption is stronger than Assumption NF. However, the inclusion of \(u_{\tilde{z}_t} \) in the orthogonality conditions probably makes little difference in practice, since if we assume rational expectation models as we referred to in Section 4.2, it is implied that both \(\{u_{\tilde{z}_t}\} \) and \(\{u_{\tilde{z}_t}\} \) are in the current information set and orthogonal to the future prediction errors. Of course if we assume the strict exogeneity of \(\{z_t\} \), Assumption NF² holds trivially. In fact, under Assumption NF² the FM-IV (or -GMM) estimators need not be corrected for the serial correlation between \(\{u_0\} \) and \(\{u_{\tilde{z}_t}\} \), thus we can remove \(\tilde{\Delta}_0 \) and \(\tilde{\Delta}_t \) from the definitions of these estimators. Accordingly, the following replacements are possible:

\[
\tilde{\Delta}_0^+ = \tilde{\Delta}_0 - \tilde{\Delta}_{0t} \tilde{\Delta}_{zt}^{-1} \tilde{\Delta}_{zt} \rightarrow -\tilde{\Delta}_{0t} \tilde{\Delta}_{zt}^{-1} \tilde{\Delta}_{zt} \quad \text{[in (10)]},
\]

\[
\tilde{\Delta}_t^+ = \tilde{\Delta}_t - \tilde{\Delta}_{0t} \tilde{\Delta}_{zt}^{-1} \tilde{\Delta}_{zt} \rightarrow -\tilde{\Delta}_{0t} \tilde{\Delta}_{zt}^{-1} \tilde{\Delta}_{zt} \quad \text{[in (16)]}.
\]

(21a)

(21b)

First, we will consider the instrument validity test for the FM-GMM estimator. The model is taken to be the same one used in Sections 4 and 5, where the instruments are assumed to be not cointegrated among themselves. Using the definition of the FM-GMM estimator \(\tilde{\Delta}_{GMM} \), and the residual \(\{\tilde{u}_{GMM}^t\} \) defined as

\[
\tilde{u}_{GMM}^t = y - \tilde{\Delta}_{GMM}^t \tilde{\Delta}_0 t,
\]

we now define \(\{\tilde{u}_{GMM}^+\} \), which is corrected for endogeneity with respect to \(u_{zt} = (u'_{\tilde{z}_1}, u'_{\tilde{z}_2})' \):

\[
\tilde{u}_{GMM}^+ = \tilde{u}_{GMM}^t - \tilde{\Delta}_{0t} \tilde{\Delta}_{zt}^{-1} u_{zt}.
\]

(In the calculation of \(\tilde{\Delta}_{GMM} \), \(\{\tilde{u}_{GMM}^t\} \) may be used.) Now we define an \(n \times q \) (unstandardized) score matrix \(\Xi \)

\[
\Xi = \tilde{U}_{GMM}' Z.
\]

Using the corrected residuals \(\{\tilde{u}_{GMM}^+\} \) defined above, we define the score with the endogeneity correction as \(\Xi^+ = \tilde{U}_{GMM}' Z \). Next, in parallel with fully modified estimation, we correct \(\Xi^+ \) for serial correlation terms as well, giving the ‘fully modified’ score:

\[
\Xi^{+,*} = \Xi^+ - \tilde{\Delta}_0^+ \tilde{\Delta}_0^t \tilde{\Delta}_0^t \quad \text{[22]}
\]

and where \(\tilde{\Delta}_0^+ = \tilde{\Delta}_0 - \tilde{\Delta}_{0t} \tilde{\Delta}_{zt}^{-1} \tilde{\Delta}_{zt} \) as earlier.
Lemma 6.1. \textit{Suppose Assumptions EC, IV, NF}² \textit{and LR hold. Then}

(a) \(T^{-1/2} \mathcal{Z}^{++} G_1 = o_p(1) \).

(b) \(T^{-1} \left(\hat{\mathcal{Z}}_{G \theta} \otimes T^{-2} \mathcal{Z}_2 \right)^{-1/2} \text{vec}(\mathcal{Z}^{++} G_2) \xrightarrow{d} \mathcal{M}(0, [I_{n_2} - P_{D_{n_1}}]). \)

where \(D_{n_2} = \left\{ I_n \otimes \left(\int_0^1 B_{n_2} B_{n_2}' \right) \right\}^{-1/2} \int_0^1 B_{n_2} B_{n_2}' \right\}. \)

Next we construct test statistics for IV validity using the scores defined above

\[\zeta = \text{vec}(\mathcal{Z}^{++}) (\hat{\mathcal{Z}}_{G \theta} \otimes Z' Z)^{-1} \text{vec}(\mathcal{Z}^{++}). \] (23)

The following theorem follows directly from Lemma 6.1.

Theorem 6.2. \textit{Under the same conditions as those in Lemma 6.1,}

\[\zeta \xrightarrow{d} \chi^2_{n(q_2 - m_1)}. \]

However, since the cointegration structure of \(\{ z_i \} \) is unknown, so is \(q_2 \). The limit distribution of \(\zeta \) is bounded by \(\chi^2_{n(q - m)} \) and this could be used to construct a bounds test. However, we now propose a way to avoid such uncertainty in the limit theory.

We suggest the use of the one-sided long-run covariance estimator \(\hat{\Delta}_{0t} \). Rotating coordinates in \(\mathbb{R}^{q_2} \) by the orthogonal matrix \(G \), we have

\[T \hat{\Delta}_{0t} G = \left[T \hat{\Delta}_{0t} : T \hat{\Delta}_{0t} \right] \]

\[= \left[\hat{U}_{G \text{MM}} Z_1 + o_p(\sqrt{T}) : T \hat{\Delta}_{0t} + o_p(T) \right] \]

\[= \left[\hat{U}_{G \text{MM}} Z_1 + o_p(\sqrt{T}) : o_p(T) \right]. \]

For the second block in the matrix in the second line, see Lemma 5.1. The third equality holds by Assumption NF². Next, define

\[\zeta_{\Delta} = T \text{vec}(\hat{\Delta}_{0t}) S_{T}^{-1} \text{vec}(\hat{\Delta}_{0t}). \] (25)

We rotate the matrix \(Z \) by \(G \) every time \(Z \) appears and using (24) it is easy to establish that

\[\zeta_{\Delta} \xrightarrow{d} \chi^2_{n(q_1 - m_1)}. \]

Now let

\[\zeta^* = \zeta_{\Delta} + \zeta. \] (26)
We have:

Theorem 6.3. Suppose Assumptions EC, IV, LR and NF hold, then

\[\zeta^* \xrightarrow{d} \chi^2_{n(q-m)}. \]

Notice that the limit distribution of \(\zeta^* \) does not depend upon the unknown parameter \(q_2 \) as a result of the augmentation of the statistic. Roughly speaking, the orthogonality condition \(\mathbb{E}[u_t \otimes z_{1t}] \) is transferred from \(\zeta_2 \) to \(\zeta_1 \) by \(\widehat{A}_{02} \), so that we now do not lose \(q_1 \) degrees of freedom as we did before in Theorem 6.2. The effect of the correction \(\widehat{A}_{02} \) on the size and power of the test in finite samples, however, needs to be investigated by simulations.

It is straightforward to extend the above results to the FM-GIVE estimation procedure. We assume strict exogeneity of the instruments as in Section 5.2. Let

\[\bar{u}_{0\text{GIVE}} = y - \widehat{A}_\text{GIVE} z, \]

\[\text{vec}(\bar{U}_{0\text{GIVE}})' = \bar{w}_T \text{vec}(\bar{U}_{0\text{GIVE}}). \]

Also define \(\{ \bar{u}_{0\text{GIVE}}' \} \), which is corrected for endogeneity with respect to \(u_{at} \) as

\[\bar{u}_{0\text{GIVE}} = \bar{u}_{0\text{GIVE}} - \widehat{A}_{00} \widehat{\Omega}_{00}^{-1} u_{at}. \]

(In the calculation of \(\widehat{\Omega}_{0z} \), \(\{ \bar{u}_{0\text{GIVE}}' \} \) may be used.) Using \(\{ \bar{u}_{0\text{GIVE}}' \} \), we define the “fully-modified” score as

\[\Xi_{\text{GIVE}}^+ = \bar{U}_{0\text{GIVE}}' Z - T \widehat{A}_{0z}. \]

We let

\[\zeta_{\text{GIVE}} = \text{vec}(\Xi_{\text{GIVE}}^+)'(\widehat{\Omega}_{00, z} \otimes Z'Z)^{-1}\text{vec}(\Xi_{\text{GIVE}}^+). \]

As a direct consequence of Theorem 6.2, we have:

Theorem 6.2’. Under Assumptions EC, IV, LR, NF and SE

\[\zeta_{\text{GIVE}} \xrightarrow{d} \chi^2_{n(q-m)}. \]

Without augmentation, the test statistic \(\zeta_{\text{GIVE}} \) converges in distribution to a chi-squared random variable with \(n(q_2 - m) \) degrees of freedom as in the case of the FM-GMM procedure and the uncertainty with respect to the parameter \(q_2 \) arises again.

We therefore proceed to construct augmented test statistics. First define the autocorrelation function of the transformed processes \(\text{vec}(\tilde{f}_{02}(j)) = 1/T \Delta \tilde{f}^{\star} \text{vec}(\tilde{U}_{0\text{GIVE}}), \text{vec}(\tilde{U}_{0\text{GIVE}})' = 1/T \Delta \tilde{f}^{\star} \tilde{P}_{02}(\tilde{U}_{0\text{GIVE}}) \) where \(\tilde{U}_{0\text{GIVE}} \) is the observation matrix.
of the residuals \{\hat{u}_{\text{GIV}}(i)\}. Then let the estimator of the corresponding one-side long-run covariance matrix be

$$\text{vec}(\hat{\delta}_{0\cdot}) = \sum_{j=0}^{T} w(j/K) \text{vec}(\hat{\rho}_{0\cdot}(j)),$$

where \(w(\cdot)\) is a kernel function as in the preceding sections. Given the strict exogeneity of the instruments, we have

$$\text{vec}(\hat{\delta}_{0\cdot}G_1) = \text{vec}(\hat{\delta}_{0\cdot}) = (1/T) \mathcal{Z}' \mathcal{Z}^{-1} \text{vec}(\hat{\mu}_{0\cdot}'G_1)' + o_p(1/\sqrt{T})$$

$$\text{vec}(\hat{\delta}_{0\cdot}G_2) = \text{vec}(\hat{\delta}_{0\cdot}) \overset{p}{\longrightarrow} 0.$$

We define

$$\zeta_{\text{GIVE}} = \text{vec}(\hat{\delta}_{0\cdot} \mathcal{Z}' \mathcal{Z}^{-1})$$

$$= \text{vec}(\hat{\delta}_{0\cdot}) \mathcal{Z}' \mathcal{Z}^{-1} \text{vec}(\hat{\delta}_{0\cdot}).$$

Then using \(\zeta_{\text{GIVE}}\) as defined in (27), we let

$$\zeta_{\text{GIVE}} = \zeta_{\text{GIVE}} + \zeta_{\text{GIVE}}.$$

The following theorem can be established by the same lines of argument as Theorem 6.3.

Theorem 6.3'. Under Assumptions EC², IV², LR², NF² and SE

$$\zeta_{\text{GIVE}} \overset{d}{\longrightarrow} \chi^2_{n(q-m)}.$$

We can conduct tests of IV validity based on \(\zeta_{\text{GIVE}}\) in the usual fashion. Note that the degrees of freedom of \(\zeta_{\text{GIVE}}\) in the limit are \(n(q-m)\), of which \(nq = \) (the number of equations) \(\times\) (the total number of instruments), and \(nm\) is the total number of unknowns. This can be interpreted as the number of overidentifying restrictions, just as in classical test statistics for IV validity.

7. A practical guide to our formulae for empirical implementation

In the previous sections of this paper, we developed our theory by starting with simple models and moving towards more complicated cases. This presentation of our theory is chosen chiefly for an expository purpose. As a result of this progressive approach, a wide variety of estimators and test statistics have been included in our development. Therefore, it may be useful in this final section of our paper to provide practitioners with recipes for empirical applications of our FM-IV estimators and test statistics.
We consider a multiple regression model

\[y_t = A x_t + u_{0t}, \]

just as before. Let \(Z_t \) denote a \(q \)-vector of instruments. Here we assume no knowledge about the cointegrating relationships among the regressors and the instruments (that is, within the regressors, within the instruments, and between the two). Then, our FM-GMM estimation procedure can be implemented in the following way. (The procedures inside the square brackets are optional in what follows.)

FM-GMM procedure

Step 1: Run the 'naive' IV regression

\[\hat{A} = Y'P_t X(X'P_t X)^{-1} \]

and calculate the residual

\[\hat{u}_{0t} = y_t - \hat{A} x_t. \]

Step 2: Use \(\{\hat{u}_{0t}\} \) obtained in Step 1 to calculate \(S_{tT} \) using the formula (19). Let

\[\vec{\hat{A}}_{GMM} = \left\{ (I_n \otimes X'O)(I_n \otimes X'O)^{-1} - (I_n \otimes X'O)S_{tT}^{-1} \right\} \vec{Y'}Z \]

and calculate the GMM residual

\[\hat{u}_{GMM} = y_t - \vec{\hat{A}}_{GMM} x_t. \]

Step 3: Use \(\{\hat{u}_{GMM}\} \) obtained in Step 2 and \(\{u_{at}\} = \{(Ax'_t, Az'_t)\}' \) to estimate the long-run covariance matrices

\[\Omega_{0t}, \Omega_{0a} \quad \text{and} \quad A^*_m = A_{int} - \Omega_{0a} \Omega_{0a}^{-1} A_{at}, \]

using kernel estimators (see formula (11)) with a kernel function that satisfies the conditions stated in Assumption LR. [Also calculate \(S_{tT} \) again as in Step 2, but use \(\{\hat{u}_{GMM}\} \) in place of \(\{\hat{u}_{0t}\} \).] Using the estimates \(\hat{\Omega}_{0t}, \hat{\Omega}_{at} \) and \(\hat{A}_{at} \) obtained above, construct

\[\vec{\hat{A}}_{GMM} = \left\{ (I_n \otimes X'O)(I_n \otimes X'O)^{-1} - (I_n \otimes X'O)S_{tT}^{-1} \right\} \vec{Y'}Z - T \hat{\Delta}_{at} \]

where

\[\hat{Y}' = Y' - \hat{\Omega}_{0t} \hat{\Omega}_{0a}^{-1} U_{0t}' \]
Calculate
\[\tilde{u}_{GMMi} = y_i - \tilde{\Lambda}_{GMMi} x_i. \]

This completes our FM-GMM estimation. [We can iterate this process by returning to the beginning of Step 3 and using \{\tilde{u}_{GMMi}\} in place of \{\tilde{u}_{GMMi}\}.]

Step 4: Estimate \(\hat{\Delta}_{M2} \) [and \(\hat{\Omega}_{00} \) again] using the GMM residual \{\tilde{u}_{GMMi}\} obtained in Step 3 and call the estimate \(\hat{\Delta}_{M2} \) [and \(\hat{\Omega}_{00} \)]. Calculate the corrected GMM residuals
\[\tilde{u}_{GMMi}^+ = \tilde{u}_{GMMi} - \hat{\Theta}_{00} \hat{\Omega}_{00}^{-1} \tilde{u}_{M2}, \]
and its long-run variance estimate
\[\hat{\Omega}_{00} = \hat{\Theta}_{00} - \hat{\Theta}_{00} \hat{\Omega}_{00}^{-1} \hat{\Theta}_{00}. \]

[We could also calculate \(S_T \) again as in Step 2, but use \{\tilde{u}_{GMMi}\} in place of \{\tilde{u}_0\}.]

Step 5: Construct the fully modified score matrix
\[\tilde{Z}\tilde{Z}^{++} = \tilde{U}_{GMMi} Z = \hat{\Delta}_{M2}, \]
and the test statistics
\[\zeta = \text{vec}(\tilde{Z}\tilde{Z}^{++})' \left(\hat{\Theta}_{00} \otimes Z'Z \right)^{-1} \text{vec}(\tilde{Z}\tilde{Z}^{++}), \]
\[\zeta_d = T \text{vec}(\hat{\Delta}_{M2})' \left(\hat{\Omega}_{00} \right)^{-1} \text{vec}(\hat{\Delta}_{M2}), \]
\[\zeta^* = \zeta_d + \zeta. \]

We can conduct instrument validity tests using \(\zeta^* \) as an asymptotic \(\chi^2 \) criterion with \(n(q-m) \) degrees of freedom. We call this the FM-GMM instrument validity test.

We may also want to use FM-GIVE when certain additional conditions hold. For instance, it is assumed here that \(Z_t \) is strictly exogenous in what follows (but again as discussed in Section 5.2 this can be relaxed). We also work under errors of the form prescribed in Assumption VR. Then the following procedure is suggested.

FM-GIVE Procedure

Step 1': = Step 1:

Step 2': Use \{\tilde{u}_0\} to estimate the VAR model in Assumption VR by the use of OLS. Using the estimates \(\tilde{C} \) and \(\tilde{\Sigma}_e \), obtain the transformation matrix \(\tilde{W}_T \) given in the formulas of Section 5.3. Let
\[\tilde{z}^* = \tilde{W}_T (I \otimes Z), \quad \tilde{z}^* = \tilde{W}_T (I \otimes Z), \quad \text{vec}(Y)^* = \tilde{W}_T \text{vec}(Y). \]
Step 3': Construct the estimator

\[\text{vec}(\widehat{\Delta}_{\text{GIVE}}) = (X'^*P_2X'^*)^{-1}X'^*X'^* \{(X'^*X'^*)^{-1}X'^*\text{vec}(Y')^* \}, \]

and associated residual

\[\widehat{\mu}_{\text{GIVE}} = y_i - \text{vec}(\widehat{\Delta}_{\text{GIVE}}). \]

Step 4': Estimate \(\Omega_0, \Omega_2, \) and \(\Delta \) using \{\widehat{\mu}_0\} or \{\widehat{\mu}_{\text{GIVE}}\}\} and call these estimates \(\widehat{\Omega}_0, \widehat{\Omega}_2, \) and \(\widehat{\Delta} \). Construct the final FM-GIVE estimator

\[\text{vec}(\widehat{\Delta}_{\text{GIVE}}) = (X'^*P_2X'^*)^{-1}X'^*X'^* \{(X'^*X'^*)^{-1}X'^*\text{vec}(Y')^* \]

\[-\text{vec}(\widehat{\Omega}_0\widehat{\Delta}_2^{-1}(U'_iZ' - T\widehat{\Delta}_2)(Z'Z)^{-1}) \}, \]

and calculate the residual

\[\widehat{\mu}_{\text{GIVE}} = y_i - \text{vec}(\widehat{\Delta}_{\text{GIVE}}). \]

[Once again we can iterate this process by returning to the beginning of Step 2' or Step 4' and using \{\widehat{\mu}_{\text{GIVE}}\} in place of \{\widehat{\mu}_0\} or \{\widehat{\mu}_{\text{GIVE}}\}\}.

Step 5': Use \{\widehat{\mu}_{\text{GIVE}}\} to calculate \text{vec}(\widehat{\Delta}_{2-}) following the formula in Section 6. [Also calculate \(\widehat{\Omega}_2 \) again.] Calculate the corrected GIVE residual

\[\widehat{\mu}_{\text{GIVE}}^* = \widehat{\mu}_{\text{GIVE}} - \widehat{\Omega}_0\widehat{\Delta}_2^{-1}\mu_0, \]

and its long-run variance estimate

\[\widehat{\Omega}_{0-2} = \widehat{\Omega}_0 - \widehat{\Omega}_0\widehat{\Delta}_2^{-1}\widehat{\mu}_0. \]

Step 6': Construct the fully modified GIVE score matrix

\[\widehat{\xi}_{\text{GIVE}}^* = U'^{\prime}_{\text{GIVE}}Z' - T\widehat{\Delta}_{2-}, \]

and the test statistics

\[\xi_{\text{GIVE}} = T\text{vec}(\widehat{\Delta}_{2-})(X'^*X'^*)^{-1}\text{vec}(\widehat{\Delta}_{2-}), \]

\[\xi_{\text{GIVE}} = \text{vec}(\widehat{\xi}_{\text{GIVE}}^*)(\widehat{\Omega}_{0-2} \otimes Z'Z)^{-1}\text{vec}(\widehat{\xi}_{\text{GIVE}}^*), \]

\[\xi_{\text{GIVE}}^* = \xi_{\text{GIVE}} + \xi_{\text{GIVE}}. \]

FM-GIVE instrument validity tests can now be conducted using \(\xi_{\text{GIVE}}^* \) as an asymptotic \(\chi^2_{n(q-m)} \) criterion.

As shown in the above procedures, the calculation of FM-IV estimators involves the computation of correction terms at the first stage, and an IV regression
at the second stage. As a result of this two-stage structure, which is common to all FM estimators, it is easy to check the impact of the estimator modifications in the course of analysis. In particular, the values of the FM correction terms can be used to assess the degree of endogeneity and the extent of serial correlation in the model. Thus, these corrections provide useful information which suggest features of the model that are empirically relevant and important. In sum, while the FM(-IV) methods have many convenient theoretical properties, they also have advantages that seem to be important and useful in empirical implementation.

Finally, when we apply FM-IV methods in practice, the choice of instrumental variables is important. As far as the stationary components of instruments are concerned, the usual IV validity conditions need to be satisfied, as those discussed in Section 3. Also, the number of non-stationary components in the instruments must be at least equal to the number of the non-stationary components in the regressors. As in usual applications of IV procedures, to ensure that these conditions are met we may explore a range of possible candidates for instruments. Then we seek to employ a ‘large enough’ number of (stationary and non-stationary) instruments so that the aforementioned ‘order’ conditions are satisfied. The validity of these instruments can subsequently be tested using our FM-GMM validity test.

In many cases, in fact, economic theory suggests sets of IV candidate variables. For example, in many RE models, as we mentioned earlier, lagged regressors are assumed to be contained in economic agents’ information sets and are therefore orthogonal to subsequent innovations that affect the outcome of agents’ decision making. Such variables can then be used as instruments and Assumption NF (NF\(^2\)) is satisfied. The advantage of the use of lagged regressors as instruments is the apparent fact that the integratedness properties of the regressors and the instruments coincide if such instruments are employed. Thus, if we use a vector of lagged regressors as instruments, such a choice of IV has certain advantages. But of course we need to be careful to ensure that the instrument set is not ‘too large,’ so that it does not distort finite sample performance.

As for the choice of non-stationary instruments, artificially generated non-stationary processes could also be used as valid instruments, at least theoretically. This method exploits the spurious correlation between independent non-stationary processes (see Phillips, 1986; Phillips and Hansen, 1990). If we are short of non-stationary IV candidate variables, this method might be used. However, attention should be paid to the finite sample properties of the FM estimators if such instruments were to be used (see Hansen and Phillips (1990) for some discussion of this point). In any case, whenever we employ the FM-IV procedure, we need to investigate candidates for instruments carefully, just as we do in usual IV regressions with stationary time series. However, our theory allows us to choose instruments from a very large set of potential candidates, especially in the case of FM-GMM. In fact, this is a great advantage of IV and GMM methods in general.
Appendix

Proof of Lemma 3.1. Rotating coordinates in the regressor space \mathbb{R}^m by the orthogonal matrix H, we have

$$C_TH = (U_0Pz - \Psi_T)X_H(X_H'P_zX_H)^{-1}.$$

By straightforward calculation parts (a) and (b) can be established; see proof of Theorem 4.1 in Phillips (1995). Then for part (a), Assumption IV(a)–IV(c) ensures the validity of the stationary instruments and the required CLT is given by (8). The usual weak convergence arguments for cointegrating regressions (see Phillips (1991b), for example) deliver part (b) of the lemma. □

Proof of Lemma 4.1. In the following, we need to calculate stochastic orders of quantities such as

$$\hat{M}_{w,	heta \theta_{11}} = \sum_{j=-K+1}^{K-1} w(j/K)\hat{\Gamma}_{w,\theta \theta_{11}}(j) = \sum_{j=-K+1}^{K-1} w(j/K)(\hat{\Gamma}_{w,\theta\theta}(j) - \hat{\Gamma}_{w,\theta\theta}(j+1))$$

$$= -w((K-1)/K)\hat{\Gamma}_{w,\theta\theta}(K) + w((-K+1)/K)\hat{\Gamma}_{w,\theta\theta}(-K+1)$$

$$+ \sum_{j=-(K+2)}^{K-1} (w(j/K) - w((j-1)/K))\hat{\Gamma}_{w,\theta\theta}(j)$$

$$= F_{1T} + F_{2T} + F_{3T}, \text{ say.} \quad (A.1)$$

Note that the summation will be taken from $-T+1$ to $T-1$ in the case of the quadratic spectral kernel but the argument in the rest of the proof is otherwise unaltered by the change.

We first focus on the component F_{3T} in (A.1), which is a sum of the autocovariances weighted by the first difference of the lag window $w(j/K)$. In what follows, we assume twice differentiability of $w(\cdot)$ as in Phillips (1995). By the mean value theorem

$$w(j/K) - w((j-1)/K) = K^{-1}w'(j^*/K),$$

where $j^* \in [j-1, j]$ and is defined for each j. Then

$$F_{3T}^0 = \sum_{j=-K+2}^{K-1} (w(j/K) - w((j-1)/K))\Gamma_{w,\theta\theta}(j) \quad (A.2)$$

$$= \frac{1}{K} \sum_{j=-K+2}^{K-1} w'(j^*/K)\Gamma_{w,\theta\theta}(j)$$

$$= \frac{1}{K^2} \sum_{j=-K+2}^{K-1} \left(\frac{w'(j^*/K)}{j^*/K} \right)^{-1}(j^*/K)^{-1}(j^*/K)^{-1}\Gamma_{w,\theta\theta}(j).$$
The condition (13) implies that \(w'(j^*/K)(j^*/K)^{-1} \) converges boundedly to \(w(r) \) for each fixed \(j \). Thus \(F_{3T}^0 \) is of order \(O(K^{-r}) \). Also, following Hannan (1970, p. 280, Theorem 9), we have

\[
\lim_{T \to \infty} K^T \text{Var} \left[\text{vec} F_{3T} \right] = \lim_{T \to \infty} K^T \frac{1}{K^2} \text{Var} \left[\text{vec} \left\{ \sum_{j=-K+2}^{K-1} w'(j^*/K) \hat{r}_{w,i}(j) \right\} \right] \\
= \lim_{T \to \infty} \frac{T}{K} \text{Var} \left[\text{vec} \left\{ \sum_{j=-K+2}^{K-1} w'(j^*/K) \hat{r}_{w,i}(j) \right\} \right] = \text{constant}.
\]

Thus, combining expressions for the variance and the bias (cf. Hannan, 1970, Theorem 10, p. 283) we have

\[
E[\text{vec}(F_{3T})' \text{vec}(F_{3T})] = O \left(\frac{1}{KT} \right) + O \left(\frac{1}{K^2} \right) = O \left(\frac{1}{T^{1+\delta}} \right) + O \left(\frac{1}{T^{2\delta}} \right)
\]

where \(K = O(T^k) \). Therefore

\[
F_{3T} = O_p \left(T^{-((k+1)/2)\wedge \delta}) \right).
\]

By Assumption LR \(r = 2 \), and then \(F_{3T} = O_p(T^{-\delta}) \), with \(\delta = ((k + 1)/2) \wedge 2k \).

On the other hand, \(F_{1T} \) and \(F_{2T} \) are negligible since they are of order \(O_p((K - 1)^{-2}) \). In sum, we deduce that \(\hat{\Omega}_{w,du_1} = O_p(T^{-\delta}) \).

Next we consider

\[
\hat{\Omega}_{du_1} = \hat{\Omega}_{w,du_1} + \sum_{j=-K+1}^{K-1} w(j/K)(\hat{A} - A) \hat{r}_{xdu_1}(j)
\]

\[
= \hat{\Omega}_{w,du_1} - w((K-1)/K)(\hat{A} - A) \hat{r}_{xdu_1}(K) \\
+ w((-K+1)/K)(\hat{A} - A) \hat{r}_{xdu_1}(-K+1) \\
+ \sum_{j=-K+2}^{K-1} (w(j/K) - w((j-1)/K))(\hat{A} - A) \hat{r}_{xdu_1}(j) \\
= B_{1T} + B_{2T} + B_{3T} + B_{4T}, \text{ say. (A.3)}
\]

We have shown that \(B_{1T} = O_p(T^{-\delta}) \). \(B_{2T} \) and \(B_{3T} \) are easily seen to be of order \(o_p(1/\sqrt{T}) \); see (P13) and (P14) in Phillips (1995). Note

\[
B_{4T} = (\hat{A}_1 - A_1) \sum_{j=-K+2}^{K-1} (w(j/K) - w((j-1)/K)) \hat{r}_{xdu_1}(j) \\
+ (\hat{A}_2 - A_2) \left[\sum_{j=-K_2+2}^{K-1} w(j/K) \hat{r}_{xdu_1}(j) - \sum_{j=-K+2}^{K-1} w((j-1)/K) \hat{r}_{xdu_1}(j) \right].
\]
where the first term is $O_p(T^{-1/2})O_p(T^{-\delta})$ by the argument similar to that for F_{3T}. The second term is $O_p(T^{-1})$ since the kernel weighted sum of $\hat{T}_{z_{u_1}}$ is $O_p(1)$ (Phillips, 1991c). In sum, we have

$$\hat{\Omega}_{0,u_1} = O_p(T^{-\delta}) + O_p(T^{-1}) = O_p(T^{-\delta}).$$

By following a similar line of argument, we find $\hat{\Omega}_{e_1 u_1} = O_p(T^{-\delta}).$

In what follows, we also need to invert the estimator of a long-run variance matrix of $I(-1)$ variables, e.g. $\hat{\Omega}_{d_{u_1, d_{u_1}}}$. As before, we find $\hat{\Omega}_{d_{u_1, d_{u_1}}} = O_p(T^{-\delta}).$

By considering the terms at lag zero, we can verify that the rate of convergence of $\hat{\Omega}_{d_{u_1, d_{u_1}}}$ is no faster than $T^{-\delta}$ and indeed $\hat{\Omega}_{d_{u_1, d_{u_1}}}^{-1} = O_p(T^{2k}).$ For a rigorous treatment of this point, see Phillips (1995).

Now, using the partitioned matrix inversion formula and writing $\hat{\Omega}_{e_1 u_2, d_{u_1}} = \hat{\Omega}_{e_1 u_2} - \hat{\Omega}_{d_{u_1, d_{u_1}}}^{-1} \hat{\Omega}_{d_{u_1, u_2}} \hat{\Omega}_{d_{u_1, d_{u_1}}}^{-1}$ we obtain

$$\hat{\Omega}_{0h}^{-1} = \hat{\Omega}_{0,u_1}^{-1} \hat{\Omega}_{d_{u_1, d_{u_1}}}^{-1} \hat{\Omega}_{d_{u_1, u_2}} \hat{\Omega}_{d_{u_1, d_{u_1}}}^{-1}$$

$$= O_p(T^{-\delta}) (O_p(T^{2k}) - O_p(T^{2k})O_p(T^{-\delta})O_p(1)O_p(T^{-\delta})O_p(T^{2k})$$

$$+ (\hat{\Omega}_{d_{u_1, d_{u_1}}}^{-1}) (O_p(T^{-\delta})O_p(T^{2k}) : \hat{\Omega}_{e_1 u_2}^{-1} + O_p(1))$$

$$= \left[O_p(T^{-\delta+2k}) : \hat{\Omega}_{0,u_1}^{-1} + O_p(1) \right].$$

Next we evaluate the matrix $T^{-1}U_{1}^{*}Z_{1} - \hat{\Delta}_{by}$ block by block. For the $(1,1)$ block, we have

$$T^{-1}U_{1}^{*}Z_{1} - \hat{\Delta}_{d_{u_1, d_{u_1}}} = w((K-1)/K)\hat{T}_{d_{u_1, d_{u_1}}} - K-1 \sum_{j=1}^{K-1} w(j/K)$$

$$- w((j-1)/K)\hat{T}_{d_{u_1, d_{u_1}}}$$

$$= O_p(T^{-\delta}).$$
As for the (2,1) block we can show that $T^{-1}U_{2}^{\prime}Z_{1} - \tilde{A}_{u_{2}} = O_{p}(T^{-\delta})$ in the same way. The (1,2) block is $T^{-1}U_{1}^{\prime}Z_{2} - \tilde{A}_{u_{1}} = O_{p}(T^{-1/2})$ as in Lemma 8.1(g) of Phillips (1995).

The result for the (2,2) block is familiar from the original Phillips and Hansen (1990) study. Combining the above results, we have

$$T^{-1}U_{1}^{\prime}Z_{G} - \tilde{A}_{u_{1}} = \begin{bmatrix} O_{p}(T^{-\delta}) : O_{p}(T^{-1/2}) \\ \vdots \\ O_{p}(T^{-\delta}) : N_{T} \end{bmatrix}, \text{ where } N_{T} \overset{d}{\longrightarrow} \int_{0}^{1} dB_{2} B_{2}'.$$

In sum, we conclude that

$$\tilde{\Omega}_{0h}^{1/2} \tilde{\Omega}_{u_{1}h}^{-1} \left(\frac{1}{T} U_{1}^{\prime}Z_{G} - \tilde{A}_{u_{1}} \right) = \begin{bmatrix} O_{p}(T^{-\delta}) + O_{p}(1/\sqrt{T}) : \Omega_{0u_{1}} \Omega_{u_{2}u_{1}}^{-1} N_{T} + O_{p}(T^{2k-\delta-1/2}) + o_{p}(1) \end{bmatrix}.$$

Further, if $k \in (1/4, 2/3)$, then $2k - \delta - 1/2 \leq -1/2$ and

$$\tilde{\Omega}_{0h}^{1/2} \tilde{\Omega}_{u_{1}h}^{-1} \left(\frac{1}{T} U_{1}^{\prime}Z_{G} - \tilde{A}_{u_{1}} \right) = \left(O_{p}(1/\sqrt{T}) : \Omega_{0u_{1}} \Omega_{u_{2}u_{1}}^{-1} N_{T} + o_{p}(1) \right).$$

This proves part (a).

Part (b) can be proved by straightforward calculation. \(\square \)

Proof of Lemma 4.2. For the first equality in part (a) in the lemma it suffices to show that

$$\tilde{A}_{0,\mu_{1}} = \tilde{A}_{\mu_{1}0} = T^{-1}U_{1}^{\prime}Z_{1} + o_{p}(1/\sqrt{T}).$$

By definition,

$$\tilde{A}_{\mu_{1}0} = \tilde{F}_{\mu_{1}0}(0) - w((K-1)/K) \tilde{F}_{\mu_{1}0}(K) + \sum_{j=1}^{K-1} (w(j/K) - w(j-1)/K) \tilde{F}_{\mu_{1}0}(j)$$

$$= \tilde{F}_{\mu_{1}0}(0) - w((K-1)/K) \tilde{F}_{\mu_{1}0}(K) - w((K-1)/K)(\tilde{A} - A) \tilde{F}_{\mu_{1}0}(K) + \sum_{j=1}^{K-1} (w(j/K) - w(j-1)/K) \tilde{F}_{\mu_{1}0}(j)$$

$$= G_{1T} + G_{2T} + G_{3T} + G_{4T} + G_{5T}, \text{ say.}$$
Note that $G_{3T} = o_p(1/\sqrt{T})$ since $w((K-1)/K) = o_p(1)$ for the truncated kernels we use in the paper (as in the proof of Lemma 4.1, the summation will be taken from $-T+1$ to $T-1$ in the case of QS kernel), and $\hat{f}_{m+1}(K+1) = o_p(1/\sqrt{T})$ by Assumption NF. G_{3T} and G_{5T} are also of order $o_p(1/\sqrt{T})$, just as in the analysis of (A.3) in the proof of Lemma 4.1. Thus, $G_{4T} = o_p(T^{-1/2})$; see Phillips (1995, Lemma 8.1(h)). G_{3T} is of order $o_p(1/\sqrt{T})$ as B_{4T} in (A.3). In sum, the equality at the beginning of the proof is now established. This result and Lemma 4.1(b) prove the first equality in the lemma.

For the second equality, we start by using the definition of \hat{U}_0, i.e.

$$Y' = \tilde{A}_1X'_1 + \tilde{A}_2X'_2 + \hat{U}_0' X_1$$

Thus,

$$\hat{U}_0' P_z X_1 = (A_1 - \tilde{A}_1)X'_1 P_z X_1 + (A_2 - \tilde{A}_2)X'_2 P_z X_1 + U_0' P_z X_1$$

$$= (A_1 - \tilde{A}_1)X'_1 P_z X_1 + U_0' P_z X_1 + o_p(1)$$

$$= -U_0' P_z X_1 (X'_1 P_z X_1)^{-1} X'_1 P_z X_1 + U_0' P_z X_1 + o_p(1)$$

$$= o_p(1),$$

where the second equality above follows from the fact that \tilde{A}_2 is T-consistent. The second equality in part (a) of the lemma now follows immediately. Other results directly follow from Lemma 4.1. \(\square\)

Proof of Theorem 4.3. First, following the notation used in (3.7) we define

$$\Psi_T = \hat{\Omega}_0 \hat{\Omega}_{aa}^{-1} U_0' P_z + T \hat{\Delta}_{1T}(Z'Z)^{-1} Z'$$

$$= T \hat{\Delta}_0 (Z'Z)^{-1} Z' + T \hat{\Omega}_0 \hat{\Omega}_{aa}^{-1} (T^{-1} U_0' Z - \hat{\Delta}_0)(Z'Z)^{-1} Z'$$

$$= \Psi_{1T} + \Psi_{2T}, \text{ say.}$$

Then $\Psi_T X_1 = \hat{U}_0' P_z X_1 + o_p(\sqrt{T})$ by Lemma 4.2(a) and 4.2(b). Thus (C1) holds. Lemma 4.2(c) also shows that (C2) holds. Therefore we can apply Lemma 3.1, 4.1(a) and 4.1(c) and establish the required results. \(\square\)

Proof of Lemma 5.1. This follows the same lines as the proof of Lemma 4.2(a) and is therefore omitted.

Proof of Theorem 5.2. Comparing the form of (9) and the estimator (16), we define Ψ_T as

$$\text{vec } \Psi_T = \mathcal{X}_S S_{zT}^{-1} \text{vec } \left(\hat{\Omega}_0 \hat{\Omega}_{aa}^{-1} (U_0' Z - T \hat{\Delta}_0) - T \hat{\Delta}_0 \right).$$

Therefore

$$\text{vec}(\Psi_T X_1) = \mathcal{X}_S \mathcal{X}_S S_{zT}^{-1} \text{vec } \left(\hat{\Omega}_0 \hat{\Omega}_{aa}^{-1} (U_0' Z - T \hat{\Delta}_0) \right) - \mathcal{X}_S \mathcal{X}_S S_{zT}^{-1} \text{vec } (T \hat{\Delta}_0).$$
We now vectorize the result in Lemma 4.2 and replace \((\mathcal{X}' \mathcal{X})^{-1}\) by \(S_2^{-1}\). (This replacement does not change the stochastic orders, given (17).) Part (b) of the lemma shows that the first term in the last expression is of order \(o_p(\sqrt{T})\). Therefore, by applying Lemma 5.2 to the second term, we have \(\text{vec}(\Psi_\tau X_1) = o_p(\sqrt{T})\), and thus (C1) holds.

To establish (C2), we use part (c) of Lemma 4.2 (modified as indicated above) and (17). We have,

\[
T^{-1} \mathcal{X}'_2 \text{vec}(\Psi_\tau) \xrightarrow{d} \left\{ \Omega_{00}^{-1} \otimes \int_0^1 dB_2 B_2' \left(\int_0^1 B_2 B_2' \right)^{-1} \right\} \text{vec}(A_{82})
\]

\[
+ \left(\Omega_{00}^{-1} \Omega_{B} \Omega_{00}^{-1} \otimes I \right) \left(\int_0^1 dB_6 \otimes B_2 \right),
\]

which establishes (C2). Then, by Lemma 3.1(a) and (17a) we have

\[
\sqrt{T} \text{vec}((\widetilde{A}_{GMM} - A)H_1)
\]

\[
= \left(\mathcal{X}'_2 S_{21}^{-1} \mathcal{X}_1 \right)^{-1} \mathcal{X}_2 S_{21}^{-1} \text{vec}(U_0' Z_1) + o_p(1)
\]

\[
= \sqrt{T} \text{vec}(\widetilde{A}_{GMM} - A)H_1 + o_p(1) \xrightarrow{d} N \left(0, \left(\mathcal{X}_2 S_{21}^{-1} \mathcal{X}_1 \right)^{-1} \right),
\]

proving the first part of the theorem. For the second part, we use Lemma 3.1(b), (17b) and the limit of \(T^{-1} \mathcal{X}_2 \text{vec}(\Psi_\tau)\) obtained above. We have

\[
\sqrt{T} \text{vec}((\widetilde{A}_{GMM} - A)H_2) \xrightarrow{d} \left\{ \Omega_{00}^{-1} \otimes \int_0^1 dB_2 B_2' \left(\int_0^1 B_2 B_2' \right)^{-1} \right\} \left(\int_0^1 B_2 B_2' \right)^{-1}
\]

\[
\times \left\{ \left(\Omega_{00}^{-1} \otimes \int_0^1 dB_2 B_2' \left(\int_0^1 B_2 B_2' \right)^{-1} \right) \right\}
\]

\[
\times \left(\int_0^1 dB_6 \otimes B_2 + \text{vec}(A_{82}) - \text{vec}(A_{06}) \right)
\]

\[
- \left(\Omega_{00}^{-1} \otimes I \right) \left(\int_0^1 dB_6 \otimes \Omega_{06}^{-1} B_6 \otimes B_2 \right) \}
\]

\[
= \left\{ I \otimes \int_0^1 B_2 B_2' \right\} \left(\int_0^1 dB_6 \otimes B_2 \right),
\]

giving the required result. □

Proof of Theorem 5.3. First, note that the premultiplication by \(W_T\) does not change the order of integration of a time series. This point can be seen as follows.

Take the matrix \(\mathcal{X} = (I_\mathcal{X} \otimes X)\) which frequently appears after the vectorization of the estimator. By the use of the \((nm \times nm)\) rotation matrix \(\mathcal{X} = [\mathcal{H}_1 : \mathcal{H}_2] = \ldots \)
\[[I_n \otimes H_1 : I_n \otimes H_2], \text{ we decompose the matrix } \mathcal{X} \text{ as } \mathcal{X} = [\mathcal{X}_1 : \mathcal{X}_2], \text{ so that the first } nm_1 \text{ columns are observations of stationary series, while the last } nm_2 \text{ columns are observations of non-stationary series. Clearly, after premultiplication by } W_T, \text{ we have } W_T \mathcal{X} = [\mathcal{X}^+_1 : \mathcal{X}^+_2], \text{ which has the same property in terms of the orders of integration in the given decomposition.} \]

In view of the above, we can use the results in Lemmas 3.1, 4.1 and 4.2 by vectorizing them and assigning the superscript "+" to each matrix and vector as necessary to signify that the transformation by \(W_T \) has been performed. Since the correction terms used in the definition of the FM-GIVE estimator (20) are the same as those in the definition of the FM-IV estimator (though no serial correlation correction term is employed since we assume Assumption SE), we know that conditions (C1) and (C2) hold. Then, by Lemma 3.1(a) we have the first result in the theorem.

Next, using the idea of the so-called Beveridge–Nelson (1981), or BN, decomposition, we observe that

\[
\mathcal{X}^+_2 = W_T(I_n \otimes X_2) = \left(\Sigma^{-1/2}_c \otimes I_T \right) \left(\sum_{r=0}^{p} \tilde{C}_r \otimes \mathcal{L}^r_T \right) (I_n \otimes X_2) \\
= \sum_{r=0}^{p} \tilde{C}_r \otimes X_{2-r} = C^c(1) \otimes X_2 + \Xi + O_p(1),
\]

where \(C^c(L) = \Sigma^{-1/2}_c C(L), \tilde{C}_r = \sum_{r=r+1}^{p} C^c_r, \) and \(\Xi = -\Sigma_{r=0}^{p} \tilde{C}_r \otimes U_{2-r}, \) the last of which represents the observation matrix of the stationary terms. Therefore, we can think of \(C^c(1) \otimes X_2 \) as the long-run "approximation" of \(\mathcal{X}^+_2. \) Similarly, we have \(\mathcal{X}^\ast \simeq C^c(1) \otimes Z \) and \(\text{vec}(U_0^\ast) \simeq (C^c(1) \otimes I) \text{vec}(U_0^\ast). \) Sample covariance matrices of these transformed data matrices have the following asymptotics:

\[
T^{-2} \mathcal{X}_2^T \mathcal{X}_2^\ast = C^c(1)'^T C^c(1) \otimes T^{-2} X^T_2 Z_2 + o_p(1) \xrightarrow{d} \Omega_{00}^{-1} \otimes \int_0^1 B_2 B'_2, (A.6a)
\]

\[
T^{-2} \mathcal{X}_1^T \mathcal{X}_1^\ast = C^c(1)'^T C^c(1) \otimes T^{-2} Z^T_2 Z_2 + o_p(1) \xrightarrow{d} \Omega_{00}^{-1} \otimes \int_0^1 B_2 B'_2, (A.6b)
\]

\[
T^{-1} \mathcal{X}_2^T \text{vec}(U_0^\ast)^* = [C^c(1)' C^c(1) \otimes I] \text{vec}(T^{-1} U_0^T Z_2) + o_p(1) \xrightarrow{d} (\Omega_{00}^{-1} \otimes I) \left(\int_0^1 dB_0 B'_2 \right). (A.6c)
\]

In these expressions we use the fact that \(C^c(1)' C^c(1) = C(1)' \Sigma^{-1} C(1) = \Omega_{00}^{-1}. \) Notice that the asymptotics of (A.6c) do not involve a one-sided long-run covariance term in view of the strict exogeneity of \{z_t\}. By (A.6), we have

\[
T^{-2} \mathcal{X}_2^T \mathcal{X}_2^\ast \xrightarrow{d} \Omega_{00}^{-1} \otimes \int_0^1 \tilde{B}_2 \tilde{B}'_2,
\]

\[
T^{-1} \mathcal{X}_2^T \mathcal{X}_2^\ast \text{vec}(U_0^\ast)^* \xrightarrow{d} (\Omega_{00}^{-1} \otimes I) \left(\int_0^1 dB_0 \otimes \tilde{B}_2 \right),
\]
\[T^{-1} \mathbf{x}'_2 \mathbf{x}'_2 \text{vec} \left[\Omega_{\alpha \alpha}^{-1} (U'_2 Z_2 + T \hat{\alpha}_{2z}) (Z'_2 Z_2)^{-1} \right] \]

\[\xrightarrow{d} (\Omega_{\alpha \alpha}^{-1} \otimes I) \left(\int_0^1 \Omega_{\alpha \alpha}^{-1} \text{vec} \left(\mathbf{Y}' \right)^* \right. \]

By Lemma 3.1(b) we have

\[\text{vec} \left(T(\tilde{A}_{\text{GIVF}} - A)H_2 \right) \]

\[= T(\mathbf{x}'_{2} P_{\mathbf{x}_{2} x'_{2}}^{-1} \mathbf{x}_{2}' \mathbf{x}_{2}^* (P_{\mathbf{x}_{2}}^* \text{vec}(\mathbf{Y}'))^* \]

\[- \text{vec} \left[\Omega_{\alpha \alpha}^{-1} (U'_2 Z_2 + T \hat{\alpha}_{2z}) (Z'_2 Z_2)^{-1} \right] \] + o_p(1),

and utilizing the above limit results we establish the second part of the theorem.

\[\square \]

Proof of Lemma 6.1.

\[T^{-1/2} \mathbf{z}_{1}^* G_1 = T^{-1/2} \mathbf{z}_{1}^* G_1 - T^{-1/2} \hat{\alpha}_{1z} \]

\[= T^{-1/2} \left(\hat{U}'_{0 \text{GMM}} Z_1 - T \hat{\alpha}_{0z} \right) - T^{-1/2} \hat{U}'_{0 \text{GMM}} \mathbf{z}_{1} - T \hat{\alpha}_{1z} \] + o_p(1).

The second term in the second line is of order o_p(1) by Lemma 4.1. Under Assumption NF, which implies the (one-sided) exogeneity of \(\{z_{it}\} \), the first term is also o_p(1). To see this, notice that \(T^{1/2} \hat{\alpha}_{0z} = T^{-1/2} \hat{U}'_{0 \text{GMM}} Z_1 + o_p(1) \), which can be shown in the same way as Lemma 5.1. This proves part (a) of the lemma. For part (b),

\[T^{-1} \mathbf{z}_{2}^* G_2 \]

\[= T^{-1} U'_2 Z_2 - \hat{\Omega}_{0w} \hat{\alpha}_{0w}^{-1} T^{-1} U'_2 Z_2 - \hat{\alpha}_{1w}^{-1} - (A_{1 \text{GMM}} - A_1) T^{-1} Z'_2 Z_2 \]

\[- T(\hat{\alpha}_{2 \text{GMM}} - A_2) T^{-1} Z'_2 Z_2 \]

\[= (T^{-1} U'_2 Z_2 - \hat{\alpha}_{0z}) - \hat{\Omega}_{0w} \hat{\alpha}_{0w}^{-1} (T^{-1} U'_2 Z_2 - \hat{\alpha}_{az}) \]

\[- T(\hat{\alpha}_{2 \text{GMM}} - A_2) T^{-1} Z'_2 Z_2 + O_p(1/\sqrt{T}) \]

\[\xrightarrow{d} \int_0^1 dB_0 B'_2 - \hat{\Omega}_{0w} \hat{\alpha}_{0w}^{-1} \int_0^1 dB_0 B'_2 - \int_0^1 dB_0 B'_2 \left(\int_0^1 \hat{B}'_2 \hat{B}'_2 \right)^{-1} \int_0^1 B_2 B'_2 \]

\[= \int_0^1 dB_0 B'_2 \left\{ I - \left(\int_0^1 B_2 B'_2 \right)^{-1} \int_0^1 B_2 B'_2 \left(\int_0^1 \hat{B}'_2 \hat{B}'_2 \right)^{-1} \int_0^1 B_2 B'_2 \right\}. \]
In the second line the stated error obtains because \((\tilde{A}_1)\text{GMM} - A_1 = O_p(1/\sqrt{T})\), while Lemma 4.1 and Theorem 5.2 establish the third line. Next we define

\[
D_{22T} = (I_n \otimes T^{-2}Z_2'Z_2)^{-1/2}(T^{-2}Z_2'Z_2)^{-1/2} \left\{ I_n \otimes \left(\int_0^1 B_{2z}B_{2z}' \right)^{-1/2} \int_0^1 B_{2z}B_{2z}' \right\}
\]

\[= D_{2z}.\]

Then, recalling the definition \(\tilde{B}_{2z}(r) = \int_0^1 B_{2z}B_{2z}' \left(\int_0^1 B_{2z}B_{2z}' \right)^{-1} B_{2z}(r)\), we get

\[
T^{-1/2} \left(\tilde{\Omega}_{00-a} \otimes T^{-2}Z'_2Z_2 \right)^{-1/2} \text{vec}(\tilde{\Xi}^{++}G_2)
\]

\[\xrightarrow{d} (I_m - P_{D_{2z}}) \left\{ \Omega_{00-a}^{-1/2} \otimes \left(\int_0^1 B_{2z}B_{2z}' \right)^{-1/2} \int_0^1 dB_{0-a} \otimes B_{2z}' \right\}
\]

\[\equiv N(0, [I_m - P_{D_{2z}}]).\]

Proof of Theorem 6.2. Using Lemma 6.1,

\[
\zeta = \text{vec}(\tilde{\Xi}^{++}' \left(\tilde{\Omega}_{00-a} \otimes Z'Z \right)^{-1} \text{vec}(\tilde{\Xi}^{++})
\]

\[= \text{vec}(\tilde{\Xi}^{++}G_1)' \left(\tilde{\Omega}_{00-a} \otimes Z'Z_1 \right)^{-1} \text{vec}(\tilde{\Xi}^{++}G_1)
\]

\[+ \text{vec}(\tilde{\Xi}^{++}G_2)' \left(\tilde{\Omega}_{00-a} \otimes Z'_2Z_2 \right)^{-1} \text{vec}(\tilde{\Xi}^{++}G_2) + o_p(1)
\]

\[= \text{vec}(\tilde{\Xi}^{++}G_2)' \left(\tilde{\Omega}_{00-a} \otimes Z'_2Z_2 \right)^{-1} \text{vec}(\tilde{\Xi}^{++}G_2) + o_p(1)
\]

\[\xrightarrow{d} \chi^2_{m(q_1-m_1)}.
\]

Proof of Theorem 6.3. We need to show that \(\zeta\) and \(\zeta_d\) are asymptotically independent. First, Assumption IV(d) implies an IP for \(\{\phi_{2z}\}\) (see Eq. (7)) and we let \(B_{2z}\) denote the resulting Brownian motion. Clearly \(\zeta\) depends on \(B_{2z}(1)\) \((\equiv N(0, S_{1z}))\) asymptotically. In view of the normality of the last expression in the proof of Lemma 6.1, it suffices to show that

\[
E \left[(I_m - P_{D_{2z}}) \left\{ \Omega_{00-a}^{-1/2} \otimes \left(\int_0^1 B_{2z}B_{2z}' \right)^{-1/2} \int_0^1 dB_{0-a} \otimes B_{2z} \right] B_{2z}(1) \right] = 0
\]
The LHS is
\[
\begin{align*}
E \left((n_{x2} - P_{D_2}) \left\{ \Omega_{00}^{-1/2} \otimes \left(\int_0^1 B_{z_2} B'_{z_2} \right)^{-1/2} \right\} \left(\int_0^1 dB_{0,b} \otimes B_{z_2} \right) B'_{b,1}(1) \right) \\
+ E \left((n_{x2} - P_{D_2}) \left\{ \Omega_{00}^{-1/2} \otimes \left(\int_0^1 B_{z_2} B'_{z_2} \right)^{-1/2} \right\} \left(\int_0^1 dB_{0,b} \otimes B_{z_2} \right) B'_{b,1}(1) \right)
\end{align*}
\times \Omega_{b,1}^{-1} \Omega_{b,1}
\]
where \(B_{b,1} = B_{b} - \Omega_{b,1}^{1/2} \Omega_{b,1}^{-1} B_{b} \) and \(\Omega_{b,1} = \sum_{-\infty}^{\infty} E[\psi_{z1,y}] \).

The first expectation
\[
= E \left((n_{x2} - P_{D_2}) \left\{ \Omega_{00}^{-1/2} \otimes \left(\int_0^1 B_{z_2} B'_{z_2} \right)^{-1/2} \right\} \right.
\times \int_0^1 (I_0 \otimes B_{z_2}) E[\int dB_{0,b} dB_{b,1} | B_{b}]
\left. \int_0^1 (I_0 \otimes B_{z_2}(r)) dr \right] \Omega_{b,1}
\]
where the definition of \(\Omega_{b,1} \) is self-evident. Noting that the random matrix in the last bracket has a symmetric distribution around the matrix of zeros (due to the symmetry of \(B_{b} \)), we see that the first expectation is zero.

The second expectation
\[
= E \left((n_{x2} - P_{D_2}) \left\{ \Omega_{00}^{-1/2} \otimes \left(\int_0^1 B_{z_2} B'_{z_2} \right)^{-1/2} \right\} \right.
\times \int_0^1 (I_0 \otimes B_{z_2}) E[\int dB_{0,b} | B_{b}] B'_{b,1}(1)
\left. \right] = 0
\]
The result follows. \(\Box \)

References

