FULLY MODIFIED LEAST SQUARES
AND VECTOR AUTOREGRESSION

by

Peter C. B. Phillips

COWLES FOUNDATION PAPER NO. 905

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY
Box 208281
New Haven, Connecticut 06520-8281

1995
FULLY MODIFIED LEAST SQUARES AND VECTOR AUTOREGRESSION

BY PETER C. B. PHILLIPS

Fully modified least squares (FM-OLS) regression was originally designed in work by Phillips and Hansen (1990) to provide optimal estimates of cointegrating regressions. The method modifies least squares to account for serial correlation effects and for the endogeneity in the regressors that results from the existence of a cointegrating relationship. This paper provides a general framework which makes it possible to study the asymptotic behavior of FM-OLS in models with full rank I(1) regressors, models with I(1) and I(0) regressors, models with unit roots, and models with only stationary regressors. This framework enables us to consider the use of FM regression in the context of vector autoregressions (VAR’s) with some unit roots and some cointegrating relations. The resulting FM-VAR regressions are shown to have some interesting properties. For example, when there is some cointegration in the system, FM-VAR estimation has a limit theory that is normal for all of the stationary coefficients and mixed normal for all of the nonstationary coefficients. Thus, there are no unit root limit distributions even in the case of the unit root coefficient submatrix (i.e., I_{n-r}, for an n-dimensional VAR with r cointegrating vectors). Moreover, optimal estimation of the cointegration space is attained in FM-VAR regression without prior knowledge of the number of unit roots in the system, without pretesting to determine the dimension of the cointegration space and without the use of restricted regression techniques like reduced rank regression.

The paper also develops an asymptotic theory for inference based on FM-OLS and FM-VAR regression. The limit theory for Wald tests that rely on the FM estimator is shown to involve a linear combination of independent chi-squared variates. This limit distribution is bounded above by the conventional chi-squared distribution with degrees of freedom equal to the number of restrictions. Thus, conventional critical values can be used to construct valid (but conservative) asymptotic tests in quite general FM time series regressions. This theory applies to causality testing in VAR’s and is therefore potentially useful in empirical applications.

KEYWORDS: Causality testing; cointegration; fully modified regression; fully modified vector autoregression; hyperconsistency; long-run covariance matrix; one-sided long-run covariance matrix; some unit roots.

1. INTRODUCTION

IN RECOGNITION OF THE FACT that most economic time series have some nonstationary characteristics much recent attention in time series econometrics has been devoted to issues of modelling with, estimation for, and inference from such data. As a direct consequence of this attention, a huge literature has emerged that seeks to confront these issues. Although the field is still very young (it is still under a decade old) the volume of contributions is so large that it is reasonable to think of it as having come a long way in a short time. Two

1This is a revised version of a paper that was delivered as the Marschak Lecture at the Far Eastern Meetings of the Econometric Society in Taipei, June 1993. The original version of the paper is available as Cowles Foundation Discussion Paper No. 1047, May 1993. Some of the results in Section 4 were obtained by the author in 1990 and were circulated at Yale under the title “Time Series Regression with Cointegrated Regressors.” My thanks go to a co-editor and two referees for their comments, to the NSF for support under Grant No. SES 9122142, and to Glena Ames for her skill and effort in keyboarding the manuscript.
early developments in this field opened up the area for subsequent research and are still of central importance as it begins to mature. One of these was the careful formulation of models that allow stationary and nonstationary time series to coexist in the same equation and that relate nonstationary series in long-run cointegrating relationships. Although there were many precursors to this research in empirical error correction modelling (see Hendry (1993) for a recent overview), the paper by Engle and Granger (1987) was certainly the primary stimulus. The other early contribution that has since opened up many different avenues of research in this area was the development of an asymptotic theory of regression for integrated (or I(1)) time series. There were precursors to this work too, coming from research in the statistical literature on scalar autoregression, starting with White (1958) and leading up to the work of Fuller (1976), Dickey and Fuller (1979), and Solo (1984). The development of a regression theory for multiple time series with unit roots came from work in econometrics on spurious regression (Phillips (1986)) and on multivariate functional central limit theory and its application to multiple time series regression (Phillips and Durlauf (1986)). The arithmetic of I(1) and I(1)/I(0) asymptotic analysis, as we might now call this theory, enables us to study the asymptotic behavior of statistical procedures in the context of models that admit both stationary and nonstationary time series. This means that we also have the apparatus to explore the statistical implications of one methodology, such as the use of error correction models, against those of another, like the use of unrestricted vector autoregression.

The present paper is in one sense an extended illustration of this exercise. But it also has a more basic purpose. This is to develop an approach to regression for time series that takes advantage of data nonstationarity and potential cointegrating links between series without having to be explicit about their form and without preliminary pretesting. Cointegrating links between nonstationary series lead to endogeneities in the regressors that cannot be avoided by using vector autoregressions (VAR's) as if they were simply reduced forms. This is a point that was explained in earlier work (1991a) by the author and is illustrated here in Section 2. Nevertheless, we often do wish to use VAR’s in empirical research without prefiltering to “induce” stationarity, without pretesting to determine the number of unit roots (or the dimension of the cointegration space), and without prior knowledge of either the directions in which the data may be stationary or the transformations that may be necessary to achieve this. However, least squares (OLS) regressions on levels VAR’s which are treated as reduced forms do not have generally good properties in models of this type, especially with respect to the coefficients of (nonredundant) nonstationary variables in the system. For example, as we explain in Section 2, OLS estimates of any cointegrating relations are asymptotically second order biased in the sense that their limit distributions are mislocated or shifted away from the true parameters, even though the estimates are consistent (or first order unbiased).
The reason for this is simple. OLS regressions are not designed to take into account long-run endogeneities in the regressors and the presence of such endogeneities produces the aforementioned bias.

Ideally, we need a statistical estimation procedure that offers many of the advantages of an unrestricted levels VAR while at the same time allowing for potential long-run endogeneities. The procedure suggested in this paper is designed to achieve this marriage of the two principles. The method proposed here we call fully modified vector autoregression (FM-VAR) and is based on, but not identical to, a time series regression estimator known as fully modified least squares (FM-OLS) that was put forward in earlier research by Phillips and Hansen (1990).

The FM estimator was originally designed to estimate cointegrating relations directly by modifying traditional OLS with corrections that take account of endogeneity and serial correlation. One reason the method has proved useful in practice is that one can use the FM corrections to determine how important these effects are in an empirical application. This has helped to make the method less of a “black box” for practitioners. In cases where there are major differences with OLS the source or sources of those differences can usually be easily located and this in turn helps to provide the investigator with additional information about important features of the data. Recent simulation experience and empirical research indicates that the FM estimator performs well in relation to other methods of estimating cointegrating relations—see Cappuccio and Lubian (1992), Hansen and Phillips (1990), Hargreaves (1994), Phillips and Loretan (1991), and Rau (1992).

The present paper explores the use of the FM-OLS procedure in a more general time series context than earlier research. Our framework includes vector autoregressions with some unit roots and some cointegrating vectors, without having to be explicit about the configuration or the dimension of the stationary and nonstationary components in the system and without the need to pretest the data concerning these characteristics. The resulting FM-VAR regression, as we call it, has some surprising properties:

(i) First, when there is cointegration in the system the limit theory of the FM-VAR estimator is normal (and asymptotically equivalent to OLS) for the stationary coefficients, and mixed normal for all of the nonstationary coefficients including the unit roots. We get mixed normal limit theory for the FM-VAR estimates of the identified components of the cointegrating matrix, and these estimates are asymptotically equivalent to the maximum likelihood estimates that are obtained by using knowledge of the dimension of the cointegration space, as in Phillips (1991a) and Johansen (1988). Thus optimal estimation of the cointegrating space is achieved by FM-VAR even though the regression is unrestricted and there is no knowledge of the dimension of the cointegrating space or even of the existence of cointegrating vectors. In addition, the FM-VAR estimates of the unit root coefficient submatrix (I_{n-r}) in the case of an n-dimensional VAR with an r dimensional cointegrating space and $n-r$
unit roots) also have a mixed normal limit theory. So there are no unit root distributions and there is no asymptotic bias in the estimation of the cointegration space in the FM-VAR limit theory.

(ii) When the system has a full set of unit roots, the FM-VAR estimator of the complete unit root matrix \((I_n\) for an \(n\)-dimensional VAR\) is hyperconsistent in the sense that the rate of convergence of the estimator exceeds the \(O(T)\) rate of the OLS and MLE estimators. This extends some earlier work by the author\(\) (1992a), which showed that the FM-OLS estimator is hyperconsistent for a unit root in a single equation autoregression.

(iii) The normal and mixed normal limit distributions of FM-VAR estimates facilitate statistical inference in cointegrated VAR’s. Wald tests that are based on the FM-VAR estimator are shown to have a limit distribution that is a linear combination of chi-squared variates. The limit variate is bounded above by the usual \(\chi^2\) distribution with degrees of freedom equal to the number of restrictions that are being tested. Thus, conventional critical values can be used to construct asymptotically valid (but conservative) tests in quite general FM-VAR regressions. This theory includes causality tests and therefore offers an alternative to sequential test procedures such as those in Toda and Phillips\(\) (1994), and to intentional model overfitting procedures like those in Toda and Yamamoto\(\) (1993).

The paper proceeds as follows. Section 2 provides an illustration and some background discussion of the relevant ideas that help to motivate the need for a modified VAR estimation procedure. Section 3 gives our regression model and assumptions. Section 4 develops a theory of FM-OLS asymptotics that covers models with \(I(1)\) and \(I(0)\) regressors, models with cointegrated regressors where the directions of cointegration are unknown, and models with \(I(1), I(0)\) and deterministic trending regressors. Section 5 considers the VAR models, develops an asymptotic theory of regression for the FM-VAR estimator, and Section 6 derives the limit theory for Wald tests of restrictions, based on FM-VAR regression. Section 7 concludes the paper and summarizes its main results. Derivations and proofs are given in an Appendix.

The notation and terminology that we use in the paper for nonstationary regression asymptotics is now fairly standard in the time series econometrics literature. Thus, we call the matrix \(\Omega = \sum_{k=-\infty}^{\infty} E(u_ku'_0)\) the long-run variance matrix of the (covariance stationary) time series \(u\), and write \(\text{lrvvar}(u) = \Omega\). In a similar way we designate long-run covariance matrices as \(\text{lrcov}(\cdot)\) and we use \(\text{lrcov}_+(\cdot)\) to signify one-sided sums of covariance matrices, e.g. \(\Delta = \sum_{k=0}^{\infty} E(u_ku'_0)\), which we call for convenience a one-sided long-run covariance (in a slight abuse of notation because \(\Delta\) is not itself a covariance matrix). We use \(BM(\Omega)\) to denote a vector Brownian motion with covariance matrix \(\Omega\) and we usually write integrals like \(\int_0^T B(s) ds\) as \(\int B\) or simply \(B\) when there is no ambiguity over limits. The notation \(y_t = I(1)\) signifies that the time series \(y_t\) is integrated of order one, so that \(\Delta y_t = I(0)\) and this requires that \(\text{lrvvar}(\Delta y) > 0\). In addition, the inequality \(> 0\) denotes positive definite when applied to matrices and the symbols \(\rightarrow_d\), \(\rightarrow_p\), \(\text{a.s.}\), \(\equiv\) and \(\Leftarrow\) signify convergence in
distribution, convergence in probability, almost surely, equality in distribution, and notational definition, respectively; and we use \(\|A\| \) to signify the matrix norm \(\{\text{tr}(A^t A)\}^{1/2} \), \(|A| \) to denote the determinant of \(A \), \(\text{vec}(\cdot) \) to stack the rows of a matrix into a column vector, \([x] \) to denote the largest integer \(\leq x \), and all limits in the paper are taken as the sample size \(T \to \infty \), except where otherwise noted.

2. BACKGROUND IDEAS AND MOTIVATION FOR MODIFIED VAR ESTIMATION

To illustrate some of the ideas that come into play in the present paper we will consider in this section the following first order n-vector autoregression

\[
y_t = A y_{t-1} + \varepsilon_t \quad (t = 1, \ldots, T),
\]

where \(\varepsilon_t \sim \text{iid} (0, \Sigma_{\varepsilon}) \) with \(\Sigma_{\varepsilon} > 0 \) and the initialization \(y_0 \) is any random n-vector. Suppose the coefficient matrix \(A \) in (1) has the simple form

\[
A = \begin{pmatrix} 0 & B \\ 0 & I_{n-r} \end{pmatrix} = (A_{ij}), \text{ say},
\]

for some \(r \times (n-r) \) matrix \(B \). Partitioning \(y_t = (y_{1t}', y_{2t}') \) conformably with \(A \) we have the following explicit form of (1):

\[
\begin{align*}
(1a) \quad & y_{1t} = B y_{2t-1} + \varepsilon_{1t}, \\
(1b) \quad & y_{2t} = y_{2t-1} + \varepsilon_{2t},
\end{align*}
\]

showing that \(y_{2t} \) is a full rank I(1) process and that \(y_{1t} \) is cointegrated with \(y_{2t} \). Thus, (1) is a simple VAR with some \((n-r) \) unit roots and some \((r) \) cointegrating vectors that have the form \(\beta' = [I_r - B] \). (This model extends a simple exercise given in Phillips (1992b).)

Premultiplication of (1) by \(\beta' \) gives the stationary relation

\[
(1a') \quad \beta' y_t = y_{1t} - B y_{2t} = \beta' \varepsilon_t = \nu_t, \text{ say},
\]

which shows the directions in which the n-vector \(y_t \) is stationary. Since these directions (and indeed the form of the coefficient matrix \(A \) in (1)) are not known, we may well consider estimating the matrix \(A \) directly from (1) as a levels VAR. In such a regression \(y_{t-1} \) is treated as predetermined and the model is usually regarded as a “reduced form.” However, because of the nonstationarity in the data, the endogeneity in the variable \(y_{2t} \) that is clear from the form of (1a') is also present in the lagged variable \(y_{2t-1} \). This can most easily be seen by noting that (1a) is really just another way of writing (1a')—we simply add and subtract \(B \varepsilon_{2t} \) to the right side of equation (1a).

To be more explicit we note that \(E(\varepsilon_{1t}, y_{2t-1}) = 0 \), so that \(y_{2t-1} \) appears to satisfy the usual orthogonality condition of a “good” regressor or predetermined variable. Nevertheless, since \(y_{2t-1} \) is nonstationary the sample covariance
\(T^{-1} \sum_{t}^{T} \varepsilon_{1t} y_{2t-1}' \) does not converge to zero. Instead, we have, using standard weak convergence results (see Phillips (1988)),

\[
(2) \quad T^{-1} \sum_{t=1}^{T} \varepsilon_{1t} y_{2t-1}' \rightarrow_d \int_{0}^{1} dB_1 B_2',
\]

where \(B_1(n \times 1) \) and \(B_2(n - r \times 1) \) are subvectors of the Brownian motion \(B = (B_1', B_2')' \equiv BM(\Sigma_{ee}). \) Now, although \(E(\varepsilon_{1t} y_{2t-1}') = 0, \) the limit processes \(B_1 \) and \(B_2 \) will be correlated Brownian motions whenever the contemporaneous correlation between \(\varepsilon_{1t} \) and \(\varepsilon_{2t} \) is nonzero (i.e., when \(\Sigma_{ee} \) is not block diagonal). This correlation between \(B_2 \) (the limit process of \(T^{-1/2} y_{2t-1} \)) and \(B_1 \) (the limit process of partial sums of \(\varepsilon_{1t} \)) is the manifestation in the limit of the “endogeneity” of the regressor \(y_{2t-1} \) in (1a).

The effects of the “endogeneity” of the regressor \(y_{2t-1} \) on a levels VAR regression are simple to determine. (See Remark 5.8 below for a general analysis and discussion.) It is most convenient here to consider the OLS estimator of \(B \) in the restricted model (1a). The limit distribution is given by the following expression:

\[
T(\hat{B} - B) = \left(T^{-1} \sum_{t=1}^{T} \varepsilon_{1t} y_{2t-1}' \right) \left(T^{-2} \sum_{t=1}^{T} y_{2t-1}' y_{2t-1}' \right)^{-1} \rightarrow_d \left(\int_{0}^{1} dB_1 B_2' \right) \left(\int_{0}^{1} B_2 B_2' \right)^{-1},
\]

whose right side we can decompose into two terms (following Phillips (1991a)) as

\[
\left(\int_{0}^{1} dB_{1.2} B_2' \right) \left(\int_{0}^{1} B_2 B_2' \right)^{-1} + \Sigma_{12} \Sigma_{22}^{-1} \left(\int_{0}^{1} dB_2 B_2' \right) \left(\int_{0}^{1} B_2 B_2' \right)^{-1},
\]

where \(B_{1.2} = B_1 - \Sigma_{12} \Sigma_{22}^{-1} B_2 \equiv BM(\Sigma_{1.2}) \) with \(\Sigma_{1.2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}. \) The second term in the above expression is the “simultaneous equations bias” that results from the “endogeneity” of the nonstationary regressor \(y_{2t-1} \) in equation (1a). This term leads to a miscentering and skewness of the limit distribution of \(\hat{B} \) and its dependence on nonscale nuisance parameters that are impossible to eliminate in toto at least in general VAR regressions. The first term in the above expression is the limit distribution of the optimal estimator under Gaussian errors \(\varepsilon_t \) in (1), as shown in Phillips (1991a).

To deal with the fact that levels VAR’s are not “reduced forms” when some of the variables are nonstationary we need to find ways of dealing with potential endogeneities of the predetermined variables. Since these endogeneities arise from cointegrating linkages of the type (1a'), one way of proceeding is to pretest the data for the presence of cointegration and the rank of the cointegration space, which in the simple example above is just the rank of the coefficient matrix \(I - A \). One can then perform a reduced rank regression to obtain an
optimal estimate of the submatrix B (after suitable transformations), as in Johansen (1988). Other methods, such as those in Phillips (1991a, 1991c), are also possible.

This paper considers an alternate approach that is more in keeping with the principle of unrestricted levels VAR regression. Our proposal is to deal with potential endogeneities by making a correction to the OLS-VAR regression formula that adjusts for whatever endogeneities there may be in the predetermined variables that is due to their nonstationarity. We seek to make these adjustments without knowing in advance the directions in which the variables may be stationary and what the rank of the cointegration space may be. We also seek to avoid pretest or sequential inferential procedures so that our approach maintains the essential methodology of the unrestricted vector autoregression. In the absence of prior or pre-test information about the cointegration space, we need to allow for our correction to be sufficiently general to accommodate all potential endogeneities and our procedure must be capable of handling variables that are stationary in some directions and nonstationary in others without knowing these directions in advance and while preserving the usual VAR limit theory for the stationary components. Our method of achieving this is to use in the VAR context a version of the fully modified least squares (FM-OLS) procedure in Phillips and Hansen (1990). The precise details of our approach are laid out in Section 5. The next section shows how the asymptotic theory of FM-OLS regression can be extended to accommodate the type of situations that arise in general time series regressions where the dimension of the cointegration space is unknown. This theory is an essential element in dealing with the case of a general VAR with some unit roots.

3. MODEL AND ASSUMPTIONS

The basic model we will work with in this section has the form

$$y_t = A x_t + u_{0t},$$

where A is an $n \times m$ coefficient matrix and x_t is an $m = (m_1 + m_2)$-dimensional vector of cointegrated or possibly stationary regressors that are specified according to the following equations:

$$H_1' x_t = x_{1t} = u_{1t}, \quad (m_1 \times 1),$$

$$H_2' \Delta x_t = \Delta x_{2t} = u_{2t}, \quad (m_2 \times 1).$$

Here $H = [H_1, H_2]$ is $m \times m$ orthogonal and rotates the regressor space in (3) so that the model has the alternative form

$$y_t = A_1 x_{1t} + A_2 x_{2t} + u_{0t}$$

where $A_1 = AH_1$ and $A_2 = AH_2$. Data matrices constructed from the variables in this model will be denoted by upper case letters. Then, (3') is written as
\[Y' = A_1 X'_1 + A_2 X'_2 + U'_0 \] with \(X'_1 = U'_1 \), \(\Delta X'_2 = U'_2 \), and where, e.g., \(Y' = [y_1, \ldots, y_T] \).

The form of (3') is useful because it separates out the \(I(0) \) and \(I(1) \) components of the regressors in (3). However, the directions \(\{H_i\} \) in which the regressors are stationary will not generally be known in advance, nor even will the rank of the cointegrating space of the regressors. Procedures are available to estimate and pre-test for these quantities. But our interest is on the development of an approach that enables us to proceed without this information, i.e. with \(H \) unknown. Our approach is designed to enable an investigator to treat (3) as a time series regression without pre-testing the regressors for unit roots and cointegration, in effect without regard to the \(I(1) \) or \(I(0) \) characteristics of the data.

Let \(u_t = (u_{0t}, u'_{1t}, u'_{2t}) \) and \(\varphi_t = u_{0t} \otimes u_{1t} \). It is convenient for our development to assume that \(u_t \) is a linear process that satisfies the following assumption.

ASSUMPTION EC (Error Condition):

(a) \(u_t = C(L) e_t = \sum_{j=0}^{\infty} C_j e_{t-j}, \sum_{j=0}^{\infty} j^a \| C_j \| < \infty, |C(1)| \neq 0 \) for some \(a > 1 \).

(b) \(\varepsilon_t \) is iid with zero mean, variance matrix \(\Sigma_e > 0 \) and finite fourth order cumulants.

(c) \(E(\varphi_{t,j}) = E(u_{0t+j} \otimes u_{1t}) = 0 \) for all \(j \geq 0 \).

By a multivariate extension of Theorems 3.4 and 3.8 of Phillips-Solo (1992), Assumption EC ensures the validity of functional central limit theorems for \(u_t \) and \(u_t u'_t \). In particular, we have

\[T^{-1/2} \sum_{t=1}^{T} u_t \rightarrow_d B(\cdot) \equiv BM(\Omega), \quad \Omega = C(1) \Sigma_e C(1)' \]

and

\[T^{-1/2} \sum_{t=1}^{T} \varphi_{t,0} \rightarrow_d N(0, \Omega_{\varphi}), \quad \Omega_{\varphi} = \sum_{j=-\infty}^{\infty} E(u_{0t+j} \otimes u_{1t} u'_{1t+j}). \]

The variance matrix \(\Sigma \) and long-run variance matrix \(\Omega \) of \(u_t \) are partitioned into cell submatrices \(\Sigma_{ij} \) and \(\Omega_{ij} \) \((i, j = 0, 1, 2) \) conformably with \(u_t \). We similarly partition the Brownian motion \(B \) in (4) into cell vectors \(B_i \) \((i = 0, 1, 2) \). When \(u_{0t} \) and \(u'_{1s} \) are independent for all \(t, s \) we have \(\Omega_{\varphi} = \sum_{j=-\infty}^{\infty} E(u_{0t} u'_{0t+j} \otimes u_{1t} u'_{1t+j}) \) and when, in addition, \(u_{0t} \equiv \text{iid}(0, \Sigma_{00}) \) we have \(\Omega_{\varphi} = \Sigma_{00} \otimes \Sigma_{11} \).

We will also need the one-sided long-run covariances

\[\Delta = \sum_{j=0}^{\infty} E(u_j u'_0) = \sum_{j=0}^{\infty} \Gamma(j) = (\Delta_{ij}), \]

and

\[A = \sum_{j=1}^{\infty} E(u_j u'_0) = \sum_{j=1}^{\infty} \Gamma(j) = (\Lambda_{ij}), \]

where the cell submatrices \(\Delta_{ij} \) and \(\Lambda_{ij} \) \((i, j = 0, 1, 2) \) again conform to the partition of the vector \(u_t \).
As will become clear later, our approach relies on estimation of both Ω and Δ, which is typically achieved by kernel smoothing of the component sample autocovariances, a subject on which there is a vast statistical literature and to which we will have very little to add, noting that our central concern lies elsewhere—in the estimation of the regression (3). Since u_{0t} must itself be estimated, we will use in its place in these calculations the residuals $\hat{u}_{0t} = y_t - \hat{Ax}_t$, from a preliminary least squares regression on (3). Under EC(c), $\hat{A} \to_p A$ and the replacement of u_{0t} by \hat{u}_{0t} will not affect our results.

Kernel estimates of Ω and Δ have the general form (see, e.g., Priestley (1981) or Hannan (1970))

$$\hat{\Omega} = \sum_{j=-T+1}^{T-1} w(j/K) \hat{F}(j) \quad \text{and} \quad \hat{\Delta} = \sum_{j=0}^{T-1} w(j/K) \hat{F}(j),$$

where $w(\cdot)$ is a kernel function and K is a lag truncation or bandwidth parameter. Truncation in the sums given in (6) occurs when $w(j/K) = 0$ for $|j| \geq K$. The sample covariances in (6) are given by

$$\hat{F}(j) = T^{-1} \sum' \hat{a}_{t+j} \hat{a}_t', \quad \hat{a}_t = (\hat{u}_{0t}, u_{1t}, u_{2t})',$n

where \sum' signifies summation over $1 < t, t + j < T$. The class of admissible kernels that we employ is made explicit in the following assumption.

ASSUMPTION KL (Kernel Condition): The kernel function $w(\cdot): \mathbb{R} \to [-1, 1]$ is a twice continuously differentiable even function with:

(a) $w(0) = 1$, $w'(0) = 0$, $w''(0) \neq 0$; and either
(b) $w(x) = 0$, $|x| \geq 1$, with $\lim_{|x| \to 1} w(x)/(1 - |x|)^2 = \text{constant}$, or
(b') $w(x) = O(x^{-2})$, as $|x| \to 1$.

Under KL we have

$$\lim_{x \to 0} (1 - w(x))/x^2 = -(1/2)w''(0),$$

and thus Parzen’s (1957) characteristic exponent (r) of the kernel $w(x)$ is $r = 2$. Under KL with (a) and (b) come the commonly used Parzen and Tukey-Hanning kernels and under KL with (a) and (b') comes the Bartlett-Priestley or quadratic spectral kernel (e.g., see Priestley (1981, p. 463)). Assumption KL is similar to kernel conditions employed in other recent econometric work (e.g., Andrews (1991)) but is somewhat more restrictive. The explicit exponent ($r = 2$ and $w''(0) \neq 0$), truncation (KL(b)) and derivative requirements in KL are helpful in achieving explicit formulae in some of our asymptotic developments. They could be relaxed at the cost of greater complexity in some of our proofs and with some changes in our final formulae and convergence rates. Thus, Assumption KL is
sufficient for our development but not necessary, and we have made no attempt to achieve minimal conditions on the kernel function for our results to hold.

We will need to be explicit about the bandwidth expansion rate of \(K \) as \(T \to \infty \). For convenience we will characterize rates of expansion of \(K = K(T) \) as \(T \to \infty \) in the following manner:

DEFINITION (expansion rate order symbol \(O_T \)): For some \(k > 0 \) and for \(K \) monotone increasing in \(T \) we write

\[
K = O_T(T^k) \quad \text{if} \quad K \sim c_T T^k \quad \text{as} \quad T \to \infty,
\]

where \(c_T \) is slowly varying at infinity (i.e. \(C_{T_x} / c_T \to 1 \) as \(T \to \infty \) for \(x > 0 \)).

Using this notation we impose the following condition on how the bandwidth parameter \(K \) grows as \(T \to \infty \).

ASSUMPTION BW (Bandwidth Expansion Rate): The bandwidth parameter \(K \) in the kernel estimates (6) has an expansion rate of the form

- **BW(i)** \(K = O_T(T^k) \) for some \(k \in (1/4, 2/3) \);
- **BW(ii)** \(K = O_T(T^k) \) for some \(k \in (1/4, 1/3) \);
- **BW(iii)** \(K = O_T(T^k) \) for some \(k \in (1/4, 1) \);
- **BW(iv)** \(K = O_T(T^k) \) for some \(k \in (0, 1) \).

Conditions like BW(i)–(iii) rule out the "optimal" growth rate \(K \sim cT^{1/5} \) that applies when minimizing the asymptotic mean squared error of kernel estimates such as \(\hat{\Phi} \) with kernels that satisfy KL. However, since our objective is estimation of the model (3) and estimation of \(\Omega \) and \(\Delta \) arise only incidentally in this process, it is not surprising that BW is not compatible with the "optimal" estimation of these nuisance parameters. The reason for Assumption BW and the role of the exponent \(k \) that appears in BW(i)–(iv) will become clear in our later analysis.

We now define \(u_{hi} = (\Delta u'_{1t}, u'_{2t})' \) (\(= \Delta x_{hi} = H' \Delta x_t = H' u_{xt} \), say) using the subscript "h" to signify that elements corresponding to \(\Delta u'_{1t} \) and \(u'_{2t} \), which occur after use of the rotation \(H \), are taken together. In a similar way, we define the long-run covariance matrices \(\Omega_{0h}, \Omega_{hh}, \Delta_{0h}, \Delta_{hh} \) and their kernel estimates in terms of the autocovariances and sample autocovariances of \(u_{ht} \). Observe that the leading submatrix of \(\Omega_{hh} \) corresponding to the difference \(\Delta u'_{1t} \), viz. \(\Omega_{\Delta u'_{1t} \Delta u^{'t}_1} \), is a zero matrix, since \(\Delta u'_{1t} \) is an \(I(-1) \) process and therefore has zero long-run variance. The first submatrix of \(\Omega_{0h} \), viz. \(\Omega_{0 \Delta u'_{1t}} \), is also a zero matrix.
for the same reason. These degeneracies in the long-run covariance matrices Ω_{0h} and Ω_{hh} arise because of the presence of some stationary components (viz. x_{1t}) in the regression equation (3). Our approach relies on kernel estimates of matrices which after transformation by H are the same as Ω_{0h} and Ω_{hh}. In view of the degeneracies of some of the component submatrices of Ω_{0h} and Ω_{hh} we need to be careful in describing the limit behavior of our estimates of these matrices. This is done in Lemma 8.1 in the Appendix and the limit theory given there is very important to our subsequent development. When there are no stationary components to the regressors x_t in (3), the matrix Ω_{hh} is positive definite and the development is simpler but also less interesting, as indeed is the model in this case.

4. THE FM-OLS ESTIMATOR AND ITS LIMIT THEORY

The FM estimator given in (7) below is constructed by making corrections for endogeneity and for serial correlation to the least squares estimator $\hat{A} = Y'X(XX)'^{-1}$ of the matrix A in the model (3). The endogeneity correction is achieved by modifying the variable y_t in (3) with the transformation

$$y_t^+ = y_t - \hat{\Omega}_{0x}^{-1}\hat{\Omega}_{xx}^{-1}A_{xx}x_t.$$

In this transformation $\hat{\Omega}_{0x}$ and $\hat{\Omega}_{xx}$ are kernel estimates of the long-run covariances, $\Omega_{0x} = \text{lrccov}(u_{0t}, A_{xt})$ and $\Omega_{xx} = \text{lrccov}(A_{xt}, A_{xt})$. The purpose of the endogeneity correction is to take into account endogeneities in the regressors x_t associated with any cointegrating links between y_t and x_t. As is clear from (3'), y_t and the x_{2t} component of x_t are cointegrated. Ideally (i.e. if Ω were known), we would correct the error u_{0t} in (3) for its conditional mean given $\Delta x_{2t} = u_{2t}$ (using the long-run covariance matrix). This would lead us to the equation

$$y_t - \Omega_{02}\Omega_{22}^{-1}\Delta x_{2t} = Ax_t + u_{0t} - \Omega_{02}\Omega_{22}^{-1}u_{2t},$$

which we can write as

(3"

$$y_t^{++} = Ax_t + u_{0t}^{++}. $$

By virtue of its construction, u_{0t}^{++} has zero long-run covariance with the errors, u_{2t}, that drive the nonstationary component of x_t in (3") thereby removing the endogeneity of the regressors in the long run (as it is the long-run covariance matrix Ω that is used in making these transformations). Of course, Ω is not known, nor is x_{2t}, so that y_t^{++} cannot be constructed and a regression on (3") is not feasible. However, if we suspect that some components of x_t are nonstationary then we can make the correction for all the components of x_t and construct y_t^+ as above, i.e. as if all components of x_t were nonstationary. It turns out that this transformation reduces to the ideal correction (i.e. y_t^{++}) asymptotically, at least as far as the nonstationary components x_{2t} are concerned. The stationary components, i.e. x_{1t}, are present in differenced or $I(-1)$ form in this transfor-
mation and have no effects asymptotically. Thus, it turns out that we can achieve an endogeneity correction without knowing the actual directions in which it is required or even the number of nonstationary regressors that need to be dealt with.

The serial correlation correction term has the form

\[\hat{\Delta}^* = \hat{\Delta}_{0x} - \hat{\Omega}_{0x} \hat{\Omega}_{xx}^{-1} \hat{\Delta}_{xx}, \]

where \(\hat{\Delta}_{0x} \) and \(\hat{\Delta}_{xx} \) are kernel estimates of the one-sided long-run covariances \(\Delta_{0x} = lrcov_{+}(u_{0t}, \Delta x_t) \) and \(\Delta_{xx} = lrcov_{+}(\Delta x_t, \Delta x_t) \). This correction is employed to take into account the effects of serial covariance in the shocks \(u_{2t} \) that drive the nonstationary regressor \(x_{2t} \) and any serial covariance between the equation error \(u_{0t} \) and the past history of \(u_{2t} \). Such correction is needed because shocks from the past persist in \(x_{2t} \) (due to the unit roots in \(x_{2t} \)) and lead to the presence of one-sided long-run covariances that carry their bias effects in an OLS regression. We remove these covariances nonparametrically by means of the kernel estimate \(\hat{\Delta}_{0x} \), so that we are, in effect, allowing them to take quite general forms. Once again, since \(x_{2t} \) and \(u_{2t} \) are unknown we proceed to remove the covariance effects by treating the complete vector \(x_t \) as if it were a full rank integrated process (i.e. as if it had a full set of unit roots). In this way the serial correlation correction is made without knowing in advance the extent of the nonstationarity that is involved.

Combining the endogeneity and serial correlation corrections we have the FM-OLS regression formula

\[\hat{A}^* = (Y^+X - T\hat{\Delta}_{0x})(X'X)^{-1}. \]

This formula is identical to that used in the original paper by Phillips and Hansen (1990) where \(x_t \) was assumed to be a full rank integrated process.

In deriving a limit theory for \(\hat{A}^* \) we need to pay attention not only to the sample moment matrices of the data and their orders of magnitude (which in turn depend on the directions of stationarity and nonstationarity in the regressors), but also to the behavior of the kernel estimates \(\hat{\Delta}_{0x}, \hat{\Delta}_{xx}, \hat{\Omega}_{0x}, \) and \(\hat{\Omega}_{xx} \) that appear in the correction terms of \(\hat{A}^* \). The latter is especially important in our case because the presence of stationary components (viz., \(x_{it} \)) in the regressors \(x_t \) means that the kernel estimator \(\hat{\Omega}_{xx} \) tends to a singular limit due to the fact that \(\Omega_{x_1x_1} = H_1'\Omega_{xx}H_1 = 0 \). The technical Lemmas 8.1 and 8.4 in the Appendix enable us to take this singularity into account in the asymptotic analysis and determine what impact it has on the asymptotic behavior of the estimator \(\hat{A}^* \) in both stationary and nonstationary directions. In this regard, the bandwidth expansion rate of \(K \) turns out to be very important. Under broad conditions we find the rather surprising outcome that the limit behavior of \(\hat{A}^* \) is the same as it would be if we knew the stationary and nonstationary directions of \(x_t \) and modified the estimator accordingly.

Using these results from Section 8, we can proceed to derive the limit theory for the FM-OLS estimator \(\hat{A}^* \). It is helpful in formulating our asymptotic theory.
to consider the component submatrices $A_1 = AH_1$ and $A_2 = AH_2$ in the model (3') that correspond to the stationary and nonstationary elements of the regressors. We have the following theorem.

4.1. **THEOREM:** Under Assumptions EC, KL, and BW:
(a) $\sqrt{T} (\hat{A}^+ - A) H_1 \rightarrow_d N(0, (I \otimes \Sigma_{11}^{-1}) \Omega_{\varphi\varphi} (I \otimes \Sigma_{11}^{-1}))$,
(b) $T (\hat{A}^+ - A) H_2 \rightarrow_d (\int_0^1 dB_{0,2} B_2' (\int_0^1 B_2 B_2'))^{-1}$,
where $B_{0,2} = B_0 - \Omega_{00} \Omega_{22}^{-1} B_2 = BM(\Omega_{00,2})$ and $\Omega_{00,2} = \Omega_{00} - \Omega_{02} \Omega_{22}^{-1} \Omega_{20}$. Part (a) holds for the bandwidth expansion rate $BW(iii)$, i.e. $K = O_e(T^k)$ with $1/4 < k < 1$. The bandwidth expansion rate required for part (b) to hold is $0 < k < 2/3$. Parts (a) and (b) both hold when $K = O_e(T^k)$ and $1/4 < k < 2/3$, i.e. under $BW(i)$.

4.2. **COROLLARY (Stationary Regressor Case):** When $m_2 = 0$ in model (3') and under Assumptions EC, KL, and BW with bandwidth expansion rate $K = O_e(T^k)$ for $1/4 < k < 1$ we have

$$\sqrt{T} (\hat{A}^+ - A) \rightarrow_d N(0, (I \otimes \Sigma_{11}^{-1}) \Omega_{\varphi\varphi} (I \otimes \Sigma_{11}^{-1})).$$

4.3. **COROLLARY (Full Rank Integrated Regressor Case):** When $m_1 = 0$ in model (3') and under Assumptions EC, KL, and BW with bandwidth expansion rate $K = O_e(T^k)$ for $0 < k < 1$ we have

$$T (\hat{A}^+ - A) \rightarrow_d (\int_0^1 dB_{0,2} B_2') (\int_0^1 B_2 B_2')^{-1}.$$

4.4. **REMARKS:** (a) Corollary 4.2 shows that the FM estimator \hat{A}^+ is consistent and has the same limit distribution as the OLS estimator \hat{A} in the case where \hat{A} is itself consistent, i.e. under Assumption EC(c). Note that EC(c) allows the equation error u_{0t} to be serially dependent and in this event the estimator \hat{A} (and hence \hat{A}^+) is not necessarily efficient. However, efficient GLS-type extensions of \hat{A}^+ can be constructed along the lines of the FM-GIVE estimator developed in Kitamura and Phillips (1992).

(b) Let $\eta_t = (u_{0t}, u_{1t+i})'$ and $\mathcal{F}_{\eta_t} = \sigma(\eta_t, \eta_{t-1}, \ldots)$ be the σ-algebra generated by $(\eta_t)'$. The condition EC(c') ensures that $E(u_{0t+j} u_{1t+i}) = 0$ for all $j \geq 0$ and hence EC(c) holds:

EC(c'): $(u_{0t}, \mathcal{F}_{\eta_t})$ is a martingale difference sequence (mds).

Moreover, under EC(c') we have

$$E(u_{0t} u_{0t+j} \otimes u_{1t} u_{1t+j}) = \begin{cases} 0 & \text{for all } j \neq 0, \\ \Sigma_{00} \otimes \Sigma_{11} & \text{for } j = 0. \end{cases}$$
and therefore $\Omega_{\varphi \varphi} = \Sigma_{00} \otimes \Sigma_{11}$. In this case, the asymptotics of Corollary 4.2,

$$
(8) \quad \sqrt{T} (\hat{A}^+ - A) \to_d N(0, \Sigma_{00} \otimes \Sigma_{11}^{-1}),
$$
correspond to those of the usual multivariate linear regression model with mds errors.

(c) One case where condition EC(c') is especially relevant occurs when there are lagged dependent variables in the regressor set. Suppose some linear combinations of the dependent variable y_t in (3) are stationary and are also independent of future realizations of the equation error u_{0t}, and suppose u_{0t} is a pure innovation (or mds). If the stationary variables x_{1t} in the transformed system (3') include these variables in lagged form, then EC(c') holds and we get the limit theory given in (8). This situation arises in stationary autoregressions and will be examined further in the next section of the paper.

(d) As it stands Theorem 4.1 says nothing about possible dependence between the limit distributions of the stationary and nonstationary components given in parts (a) and (b) of the theorem. It turns out that with a slight strengthening of condition EC(c') we can establish that these distributions are independent. Let $\eta_t = (u'_{0t}, u'_{1t+1}, u'_{2t+1}, \ldots)$ and $\mathcal{F}_t = \sigma(\eta_t, \eta_{t-1}, \ldots)$ be the σ-algebra generated by $\{\eta_j\}_{j=-\infty}$. This enlarges the σ-algebra used in condition EC(c') in Remark (b) above. The condition EC(c''), is stronger than EC(c') and ensures that, in addition, $E(u_{0t} u_{1t+j} u_{2t}) = 0$ for all $j \geq 0$.

EC(c''): (u_{0t}, \mathcal{F}_t) is a martingale difference sequence with $E(u_{0t} u'_{0t} | \mathcal{F}_{t-1}) = \Sigma_{00}$ a.s.

As the proof of Theorem 4.1 makes clear, the limit distribution in (a) depends on that of $T^{-1/2} u_0' X_1 = T^{-1/2} \sum_{t=1}^T u_{0t} x_{1t} = T^{-1/2} \sum_{t=1}^T u_{0t} u'_{1t}$. The limit distribution in (b) depends on that of $T^{-1} u_0' X_2, T^{-1} u'_{1t} X_2$, and $T^{-2} X_2 X_2$, which in turn depend on the limit of the process $T^{-1/2} \sum_{t=1}^T (u'_{0t}, u'_{2t}, \ldots)$. Under EC(c'') we have

$$
E(u_{0t} \otimes u_{0t} \otimes u_{1t}) = E[I \otimes I \otimes u_{1t}]E[(u_{0t} \otimes u_{0t} \otimes I) | \mathcal{F}_{t-1}] = 0,
$$
and

$$
E(u_{0t} \otimes u_{1t} \otimes u_{2t}) = E[E[u_{0t} \otimes u_{1t} \otimes u_{2t} | \mathcal{F}_{t-1}]] = 0,
$$
so that the limit distributions of $T^{-1/2} \sum_{t=1}^T u_{0t} u'_{1t}$ and $T^{-1/2} \sum_{t=1}^T u_{0t}, u'_{2t}$ are uncorrelated and, being Gaussian, are therefore independent. The functionals of these limit processes that appear in parts (a) and (b) of Theorem 4.1 are therefore also independent. Hence, under condition EC(c''), $\sqrt{T} (A^+ - A)$ and $T(A^+_2 - A_2)$ are independent in the limit. An important case where condition EC(c'') holds is the vector autoregressive model with some unit roots and this will be our subject of analysis in Section 5.

(e) The limit theory for the nonstationary coefficients that is given in Theorem 4.1(b) applies without making any condition like EC(c) or EC(c') on the stationary components of the system. This limit theory corresponds to that of
the optimal estimator obtained by maximum likelihood under Gaussian errors with the number of unit roots known in advance, which was derived in Phillips (1991a). Thus, even if EC(c) does not hold and the OLS and FM-OLS estimators of the stationary components may be inconsistent, the FM-OLS estimator of the nonstationary component is still an optimal estimator and this is so even though the degree of cointegration among the regressors x_i is unknown. This result holds because we still have a negligible contribution from the $I(0)$ component in the $I(1)$ asymptotics. In particular,

$$T^{-1}U_0'U_1 - \hat{\Delta}_0 u_1' = O_p(K^{-2}) + O_p(1/\sqrt{KT})$$

and

$$T^{-1}\Delta U_1'U_1 - \hat{\Delta}_{\Delta U_1} U_1 = O_p(K^{-2})$$

as in the proofs of Lemma 8.1(e) and (f). Hence, referring to the proof of Theorem 4.1 in the Appendix, the first term in (P31)—which carries the effects of the estimation of the stationary components on the asymptotics for the nonstationary coefficients—is $O_p(1)$ as $T \to \infty$ and can therefore be neglected.

(f) From Theorem 4.1 we get the (potentially degenerate) asymptotics for the full coefficient matrix \hat{A}^+, viz.

$$\sqrt{T}(\hat{A}^+ - A) = \sqrt{T}(\hat{A}^+ - A)HH'$$

$$= \sqrt{T}(\hat{A}^+_1 - A_1)H'_1 + \sqrt{T}(\hat{A}^+_2 - A_2)H'_2$$

(9) $$\to_d N(0, (I \otimes H_1 \Sigma^{-1}_{11}) \Omega_{\varphi} (I \otimes \Sigma^{-1}_{11} H_1'))$$

(10) $$= N(0, \Sigma_{00} \otimes H_1 \Sigma^{-1}_{11} H_1'),$$

the last line holding under EC(c').

(g) When EC(c') holds we can construct a consistent estimate of the covariance matrix $\Sigma_{00} \otimes H_1 \Sigma^{-1}_{11} H_1'$ of the limit distribution (10) directly from the matrix $\hat{\Sigma}_{00} \otimes T(X'X)^{-1}$. This is because

$$(11) \quad T(X'X)^{-1} \to_p H_1 \Sigma^{-1}_{11} H_1'$$

(see Phillips (1988, p. 95)) and since $\hat{A}, \hat{A}^+ \to_p A$,

$$\hat{\Sigma}_{00} = T^{-1} \sum_1^T \hat{u}_{0t} \hat{u}_{0t}' = T^{-1} \sum_1^T u_{0t} u_{0t}' + o_p(1) \to_p \Sigma_{00}.$$
where \(\hat{\phi}_{\hat{x}} \) is the kernel estimate
\[
\hat{\phi}_{\hat{x}} = \frac{K-1}{n} \sum_{j=-K+1}^{K} w(j/K) \hat{\phi}_{\hat{x}}(j),
\]
and \(\hat{x}_{it} = \hat{u}_{0i} \otimes x_i \). Noting from (11) that \(T(X'X)^{-1} = H_1 \Sigma^{-1} H_1' + o_p(1) \) and \(H_1 x_i = x_{1i} = u_{1i} \), we have \((I \otimes H_1) \hat{x}_{it} = \hat{u}_{0i} \otimes u_{1i} = \hat{\phi}_i \) and so
\[
(I \otimes H_1) \hat{\phi}_{\hat{x}} = \hat{\phi}_i \Rightarrow \phi_{\hat{x}} \rightarrow_p \Omega_{\phi \phi}.
\]
Combining (11) and (12) we obtain
\[
(I \otimes T(X'X)^{-1}) \hat{\phi}_{\hat{x},\phi} = \hat{\phi}_i \Rightarrow \phi_{\hat{x},\phi} \rightarrow_p \Omega_{\phi \phi}.
\]
Combining (11) and (12) we obtain
\[
(I \otimes T(X'X)^{-1}) \hat{\phi}_{\hat{x},\phi} = \hat{\phi}_i \Rightarrow \phi_{\hat{x},\phi} \rightarrow_p \Omega_{\phi \phi}.
\]
Combining (11) and (12) we obtain
\[
(I \otimes T(X'X)^{-1}) \hat{\phi}_{\hat{x},\phi} = \hat{\phi}_i \Rightarrow \phi_{\hat{x},\phi} \rightarrow_p \Omega_{\phi \phi}.
\]
Combining (11) and (12) we obtain
\[
(I \otimes T(X'X)^{-1}) \hat{\phi}_{\hat{x},\phi} = \hat{\phi}_i \Rightarrow \phi_{\hat{x},\phi} \rightarrow_p \Omega_{\phi \phi}.
\]
(h) Results (9) and (13) suggest that inference about \(A \) can be performed using the asymptotic approximation
\[
\sqrt{T} (\hat{A}^+ - A) \sim N \left(0, [I \otimes T(X'X)^{-1}] \hat{\phi}_{\hat{x},\phi} [I \otimes T(X'X)^{-1}] \right).
\]
Suppose we wish to test the restrictions
\(\mathcal{H}_0: R \text{ vec } A = r, \quad R(q \times nm) \) of rank \(q \).
A natural test statistic is the Wald statistic
\[
W \phi = T(R \text{ vec } \hat{A}^+ - r)^\top \left(R[I \otimes T(X'X)^{-1}] \hat{\phi}_{\hat{x},\phi} [I \otimes T(X'X)^{-1}] R \right)^{-1} (R \text{ vec } \hat{A}^+ - r).
\]
In view of (9) and (13) and provided the following rank condition holds:
\[
\text{rank} \left[R \left(I \otimes H_1 \Sigma^{-1} \right) \Omega_{\phi \phi} (I \otimes \Sigma^{-1} H_1') R' \right] = q,
\]
we have
\[
W \phi \rightarrow_d \chi_q^2, \quad \text{as } T \rightarrow \infty
\]
and so conventional chi-squared asymptotics apply.

(i) When Assumption EC(c') holds, the limit distribution (10) applies and we can use the asymptotic approximation
\[
\sqrt{T} (\hat{A}^+ - A) \sim N(0, \hat{\Sigma}_{00} \otimes T(X'X)^{-1}).
\]
To test \(\mathcal{H}_0 \), the natural statistic in this case is
\[
W_{00} = T(R \text{ vec } \hat{A}^+ - r)^\top \left[R \left(\hat{\Sigma}_{00} \otimes T(X'X)^{-1} \right) R' \right]^{-1} (R \text{ vec } \hat{A}^+ - r)
\]
and if
\[
\text{rank} \left[R \left(\Sigma_{00} \otimes H_1 \Sigma^{-1} H_1' \right) R' \right] = q
\]
we have \(W_{00} \rightarrow_d \chi_q^2 \) as in (16).

(j) We now consider the interesting case where the rank condition (RK) fails.
This occurs when the restriction matrix R isolates some of the nonstationary coefficients. Thus, suppose $R = R_1 \otimes R_2'$ and the hypothesis \mathscr{H}_0 has the form

$$\mathscr{H}_0: R_1 A R_2 = R_3, \quad \text{vec} \ R_3 = r,$$

where R_1 and R_2 are of rank q_1 and q_2, respectively. If $R_2' H_1$ is of deficient row rank, then (RK) fails. In this case we may write

$$R_2 = \begin{bmatrix} R_{21} ; & R_{22} \end{bmatrix} = \begin{bmatrix} H_1, H_2 \end{bmatrix}$$

$$= \begin{bmatrix} H_1 S_{20} + H_2 S_{h1} + H_2 S_{h2} ; & H_2 S_{22} \end{bmatrix}$$

for some matrices S_{20}, S_{h1}, S_{h2}, and S_{22}. Without loss of generality (and by rotating the restrictions (17), if necessary) we may assume that the matrix S_{h1} has full column rank. The hypotheses about A that correspond to the columns R_{22} of R_2 relate solely to the nonstationary coefficients in A, i.e. to $A_2 = AH_2$, because $R_1 A R_{22} = R_1 A H_2 S_{22} = R_1 A S_{22}$. Now $R_{22}' H_1 = 0$ and then we have

$$R(\Sigma_{00} \otimes H_1 \Sigma_{11}^{-1} H_1' R') = R_1 \Sigma_{00} R_1' \otimes \begin{bmatrix} R_{21}' H_1 & 0 \end{bmatrix} \Sigma_{11}^{-1} [H_1 R_{21}, 0],$$

which has rank $q_1 q_2 < q_1 (q_2 + q_2) = q$. What is the limit distribution of the statistic W_{00}^+ in this case when Condition RK fails? The following theorem provides the answer.

4.5. THEOREM: Under Assumptions EC, EC(c'), KL, and BW(i) the Wald statistic W_{00} for testing the restrictions \mathscr{H}_0: $R_1 A R_2 = R_3$ has a limit distribution which is a mixture of χ^2 variates. In particular, when R_2 has the form given in (18) we have

$$W_{00}^+ \rightarrow_d \sum_{i=1}^{q_1} \chi^2_{q_{21}}(i) + \sum_{j=1}^{q_1} d_j \chi^2_{q_{22}}(j) \equiv \chi^2_{q_{21}, q_{22}} + \sum_{j=1}^{q_1} d_j \chi^2_{q_{22}}(j),$$

where $\chi^2_{q_{21}}(i) \equiv iid(\chi^2_{q_{21}})$, $\chi^2_{q_{22}}(j) \equiv iid(\chi^2_{q_{22}})$ and $\chi^2_{q_{21}}(i)$ and $\chi^2_{q_{22}}(j)$ are independent for all i and j. The coefficients d_j in (19) are the latent roots of the matrix $(R_1 \Omega_{00}^{-1} R_1')^{-1} (R_2 \Sigma_{00} R_1')^{-1} - 1$.

4.6. REMARKS: (a) Under EC(c'), $\Omega_{00,2} = \Omega_{00} - \Omega_{02} \Omega_{22}^{-1} \Omega_{02} = \Sigma_{00} - \Omega_{02} \Omega_{22}^{-1} \Omega_{20} \leq \Sigma_{00}$. Thus $(R_1 \Omega_{00,2}^{-1} R_1')^{1/2} (R_1 \Sigma_{00} R_1')^{-1} (R_1 \Omega_{00,2}^{-1} R_1')^{1/2} \leq I$ and therefore the latent roots $d_j (j = 1, \ldots, q_1)$ that appear in (19) as weights satisfy $0 < d_j \leq 1$. It follows that in the limit (19) is bounded above by the variate $\chi^2_{q_{21}, q_{22}} + \sum_{j=1}^{q_1} \chi^2_{q_{22}}(j) = \chi^2_{q_{21}, q_{22}} + \chi^2_{q_{22}, q_{22}} = \chi^2_{q_{21}, q_{22}}$. Tests of conservative size (asymptotically) can therefore always be constructed for W_{00}^+ using the $\chi^2_{q_{21}, q_{22}}$ distribution.

(b) Now suppose we construct the Wald statistic using the variance matrix estimator $\hat{\Omega}_{00, \Delta x} = \hat{\Omega}_{00} - \hat{\Omega}_{0x} \hat{\Omega}_{xx}^{-1} \hat{\Omega}_{x0} = \hat{\Omega}_{00} - \hat{\Omega}_{0h} \hat{\Omega}_{hh}^{-1} \hat{\Omega}_{h0}$ constructed from the
long-run variance and covariance matrices of \(\hat{u}_0 \) and \(\Delta x_t \). Since \(\hat{\Omega}_{00-\Delta x} \to_p \Omega_{00} - \Omega_{02} \Omega_{22}^{-1} \Omega_{20} = \Omega_{00-2} \), we obtain in the same way as Theorem 4.5 and under the same conditions the limit result

\[
W^{+}_{00-2} = T(R \text{ vec } \hat{A}^+ - r) \left[R \left(\hat{\Omega}_{00-\Delta x} \otimes T(X'X)^{-1} \right) R \right]^{-1} (R \text{ vec } \hat{A}^+ - r)
\]

\[\to_d \sum_{i=1}^{q_1} \left(1/d_i \right) \chi^2_{q_2} (i) + \chi^2_{q_4 q_2}.
\]

It follows that in the limit \(W^{+}_{00-2} \) is bounded below by the limit distribution \(\chi^2_{q_4 q_2} \). An asymptotically liberal test of the hypothesis \(\mathscr{H}_0 \) can therefore be constructed using \(W^{+}_{00-2} \).

(c) Note that \(d_i = 1 \) (\(i = 1, \ldots, q_1 \)) when \(\Sigma_00 = \Omega_{00-2} \), i.e., when \(\Omega_{02} = 0 \) or when \(u_{0t} \) and \(u_{2t} = \Delta x_{2t} \) have long-run zero covariance. Observe also that when there are no nonstationary components (i.e., \(x_t = I(0) \)) we have \(\hat{\Omega}_{00-\Delta x} \to_p \Omega_{00} = \Sigma_00 \) under EC(c') and then both \(W^{+}_{00-2} \) and \(W^{+}_{00-2} \to_d \chi^2_{q_2} \) in the limit. When there are no stationary components in the model we have \(\hat{\Omega}_{00-\Delta x} \to_p \Omega_{00-2} \) and again \(W^{+}_{00-2} \to_d \chi^2_{q_4 q_2} \). Thus, \(W^{+}_{00-2} \) has the desirable property of being asymptotically \(\chi^2_{q_4 q_2} \) in both extreme cases (stationary regressors only or full rank nonstationary regressors). It will be interesting to explore the finite sample performance of \(W^{+}_{00-2} \) and \(W^{+}_{00-2} \) in intermediate cases where there are both stationary and nonstationary components to the regressors.

Since the \(d_i \)'s can be consistently estimated from the matrix \((R_1 \hat{\Omega}_{00-\Delta x} R_1' \Sigma_00 R_1')^{-1} \) we will in some cases also have the possibility of using the corresponding mixed \(\chi^2 \) limit theory in these tests if the dimensions in the submatrices of (18) were known. In the case of \(W^{+}_{00-2} \), we would then get a Wald test that has the correct asymptotic size for all cases, i.e. stationary regressors, full rank nonstationary regressors, and partly nonstationary regressors.

(d) The reason for the mixed \(\chi^2 \) limit theory for the Wald statistic \(W^{+}_{00} \) can be explained in the following way. The statistic \(W^{+}_{00} \) is constructed using a variance matrix metric of the form \(\hat{\Sigma}_{00} \otimes (X'X)^{-1} \). By virtue of this construction the error variance matrix \(\hat{\Sigma}_{00} \) is a “communal” weighting metric for each column (or linear combination of columns) of the coefficient matrix \(A \) irrespective of whether the associated variable is \(I(0) \) or \(I(1) \). For \(I(0) \) regressions with mds errors this choice of weighting matrix is appropriate. However, for \(I(1) \) regressions the “effective” error vector in an FM regression is \(u_{02-21} = u_{0t} - \Omega_{02} \Omega_{22}^{-1} u_{2t} \), which is \(u_{0t} \) corrected for its conditional (long-run) mean given \(u_{2t} = \Delta x_{2t} \). (This implicit modification of the error is due to the endogeneity correction within the FM procedure.) The long-run variance matrix of \(u_{02-21} \) is \(\Omega_{00-2} \) and as pointed out in (a) we have the matrix inequality \(\Omega_{00-2} \leq \Sigma_00 \). Thus, FM regression reduces the long-run error variation by conditioning out the effects of \(\Delta x_{2t} \). Since the weights in the communal metric \(\hat{\Sigma}_{00} \otimes (X'X)^{-1} \) are heavier than are appropriate for the FM estimates of the nonstationary coefficients we find the limit distribution \(\chi^2 \) mixture given in (19) has weights \(d_j \) that satisfy \(0 < d_j \leq 1 \).
4.7. Extensions to Models with Deterministic Regressors: The main results given earlier in this section continue to hold (with some modifications to the formulae) when there are deterministic regressors in the system (3) and when the regressors x_t may have deterministic components. The limit theory for the FM-OLS estimator and associated Wald tests can be developed as in Theorems 4.1 and 4.5. These generalizations are not difficult and we will therefore only illustrate what is involved here. For example, suppose the model (3) is replaced by

$$y_t = A x_t + \Pi k_t + u_{0t} = \Phi z_t + u_{0t}, \text{ say}$$

where k_t is a p-vector of deterministic regressors and the vector x_t can be decomposed into $I(0), I(1)$ and deterministic components as

$$x_t = H_1 x_{1t} + H_2 x_{2t} + F k_t,$$

for some $m \times p$ matrix F.

The regressors k_t will usually involve polynomials in time, in which case we can write

$$k_t = (t^{s_1}, t^{s_2}, \ldots, t^{s_p})', \quad 0 \leq s_1 < s_2 < \cdots < s_p,$$

for some integers s_i ($i = 1, \ldots, p$). Note that s_1 may be zero and we therefore allow for the presence of an intercept in (3''), a possibility which seems to be excluded in work by Hansen (1992) on FM cointegrating regressions with deterministic trends. (We show how this possibility is accommodated in the next paragraph.) For such regressors we use the weight matrix $\delta_T = \text{diag}(T^{s_1}, \ldots, T^{s_p})$ and then

$$\delta_T^{-1} k_{(Tr)} \to k(r) = (r^{s_1}, \ldots, r^{s_p})',$$

uniformly in $r \in [0,1]$. The limit functions $k(r)$ are linearly independent in $L_2[0,1]$ and $\int_0^1 kk' > 0$.

The FM-OLS estimator of Φ in (3'') is

$$\hat{\Phi}^+ = \left[\hat{\Delta}^+ : \hat{\Pi}^+ \right] = \left(Y^{++} Z - \left[T \hat{\Delta}_{0x}^+ : 0 \right] \right)(Z'Z)^{-1},$$

which is an augmented version of (7) and a formula that was given originally in Phillips and Hansen (1990). But in the above expression the long run covariance estimates that arise in $\hat{\Delta}_{0x}^+ = \hat{\Delta}_{0x} - \hat{\Delta}_{0x} \hat{\Delta}_{xx}^{-1} \hat{\Delta}_{xx}$ are based on $(\hat{u}_{0t}, \hat{u}_{xt})$, where $\hat{u}_{0t} = y_t - \hat{A} x_t - \hat{N} k_t$ is a first stage OLS residual and $\hat{u}_{xt} = \hat{\Delta} \hat{u}_{kt}$, wherein $\hat{u}_{kt} = x_t - \hat{F} k_t$ is the residual from the OLS regression of x_t on k_t. We remark that if k_t involves an intercept as its lead component then the corresponding column of \hat{F} is inconsistent (and, in fact, diverges) when $m_2 \geq 1$. However, this component of \hat{F} is eliminated by the difference transformation $\hat{u}_{xt} = \hat{\Delta} \hat{u}_{kt}$ and the remaining columns of \hat{F} are consistent since $s_i \geq 1$ ($i > 1$) and the regressors k_{it} ($i > 1$) dominate the stochastic trend and stationary components of x_t. Thus, $\hat{u}_{xt} = H_1 \Delta x_{1t} + H_2 \Delta x_{2t} + (F - \hat{F}) \Delta k_t = H_1 \Delta x_{1t} + H_2 \Delta x_{2t} + o_p(1)$ and therefore the correction terms work in the same way as those in regressions with no deterministic trends.
The limit theory for the components of the FM-OLS estimator $\hat{\Phi}^+$ can be deduced in much the same way as Theorem 4.1. But some care needs to be taken over the extra partitioning in Φ corresponding to the I(0) and I(1) components. Again, we will just provide the basic approach here.

In making the construction it is useful to employ a composite weight matrix of the form

$$D_T^{-1} = \begin{bmatrix} H^T \cdot T^{1/2} & \delta_T^{-1} F \delta_T \\ 0 & \delta_T^{-1} \end{bmatrix}.$$

Then

$$D_T^{-1} z_t = \begin{bmatrix} x_{1t} \\ T^{-1/2} x_{2t} \\ \delta_T^{-1} k_t \end{bmatrix},$$

which reorganizes and suitably weights the components of the regressors z_t. Note that for some fixed $r > 0$

$$D_T^{-1} z_{[T, r]} \to_d (x'_{1r}, B_2(r)' r, k(r)' = (x'_{1r}, J(r)' r),$$

giving the limit processes that correspond to these standardized regressors. The limit theory for $\hat{\Phi}^+$ is now

$$\sqrt{T}(\hat{\Phi}^+ - \Phi) D_T \to_d \begin{bmatrix} (\hat{\Phi}^+ - A) H_1 : T(\hat{\Phi}^+ - A) H_2 : \sqrt{T}(\hat{\Pi}^+ - \Pi) \\ + (\hat{\Phi}^+ - A) F \delta_T \end{bmatrix}$$

$$\to_d \begin{bmatrix} N(0, (I \otimes \Sigma_{11}^{-1}) \Omega_{\psi \psi} (I \otimes \Sigma_{11}^{-1}) : \\ \int_0^1 dB_{0.2} J' (\int_0^1 JJ')^{-1} \end{bmatrix},$$

which extends Theorem 4.1 to allow for deterministic trends. The component of this limit distribution corresponding to the stationary part of x_t is identical to part (a) of Theorem 4.1, where there are no deterministic regressors. The component that corresponds to the nonstationary part of x_t differs from part (b) of Theorem 4.1 in that it involves the deterministic function $k(r)$ as part of the limit function $J(r)$. The coefficients of the nonstationary part of x_t and the deterministic regressors k_t in (3”) are taken together in the limit variate $(dB_{0.2} J' (JJ')^{-1})$. Like part (b) of Theorem 4.1 this limit variate is mixed normal and thereby facilitates statistical inference in the same way as before.

For instance, if we wish to test H_0 the natural Wald test is

$$W^+_k = T(R vec \hat{A}^+ - r) \left[R \left[\Sigma_{00} \otimes T(X' Q R X)^{-1} \right] R \right]^{-1} (R vec \hat{A}^+ - r),$$
where Q_K is the orthogonal projection matrix onto $\mathcal{R}(K) \perp$ and K is the matrix of observations of k_i. It is easy to show that $T(X'Q_KX)^{-1} \rightarrow_p H_1 \Sigma_1^{-1}H_1'$ and then $W_K^{**} \rightarrow_d \chi^2_q$, provided condition RK holds. If RK fails and the hypothesis is of the form H_1 given in (17), then W_K^{**} has the same limit as (19) and Theorem 4.5 applies.

In addition to these extensions of our theory, we can also consider the case where the regression equation (2') does not include all of the deterministic regressors k_i. Again, closely related results are obtained. As in the case above, the limit theory for the FM-OLS estimator of the coefficients of the nonstationary part of x_t and the included deterministic regressors must be taken together but the limit distribution is still mixed normal. In consequence, Wald statistics that are formed in the usual way have limit chi-squared or mixed chi-squared distribution, just as in Theorem 4.5.

Further extensions of this theory to include deterministic regressors with breaking trends are straightforward. In this case the corresponding limit functions will involve some simple cadlag functions, as in Park (1992). The other aspects of our limit theory for \hat{a}_+ go through as before, as does the limit theory for the associated Wald tests.

5. FM VECTOR AUTOREGRESSION WITH SOME UNIT ROOTS

In this section we will consider the use of FM-OLS regression in VAR models where there are possibly some unit roots and some cointegrating relations. The model we will adopt is similar to that of Johansen (1988) in that we will allow the levels coefficient matrix (in a VAR in differences) to be of reduced rank, but our approach is different in that we do not employ reduced rank regression and we do not employ any knowledge or pre-test information about the rank of the cointegrating space. Thus, our procedure will be an alternative to unrestricted levels VAR estimation and may be used without regard to the number of unit roots in the system.

The n-vector time series y_t is assumed to be generated by the following kth order VAR model:

$$y_t = J(L)y_{t-1} + \varepsilon_t \quad (t = 1, 2, \ldots, T),$$

where $J(L) = \sum_{i=1}^k L^i$. The system (23) is initialized at $t = -k + 1, \ldots, 0$ and since our asymptotics do not depend on the initial values $\{y_{-k+1}, \ldots, y_0\}$ we can let them be any random vectors including constants. However, it is sometimes convenient to set the initial conditions so that the $I(0)$ component of (23) is stationary (rather than asymptotically stationary) and we will proceed as if this has been done. We define

$$J^*(L) = \sum_{i=1}^{k-1} J^* L^{i-1}, \quad \text{with} \quad J^* = - \sum_{h=i+1}^k J_h,$$

$$A = J(1),$$
and then (23) can be written as

\[y_t = J^*(L) \Delta y_{t-1} + Ay_{t-1} + \varepsilon_t, \]

or in the equivalent error correction model (ECM) format

\[\Delta y_t = J^*(L) \Delta y_{t-1} + (A - I) y_{t-1} + \varepsilon_t. \]

To fix ideas in what follows we need to be more specific about (23), its allowable roots, the dimension of the cointegration space, and the form of the cointegrating coefficients. The following assumption is convenient for this purpose.

ASSUMPTION VAR (Vector Autoregression):

(a) \(\varepsilon_t \) satisfies Assumption EC(b), i.e. is iid with zero mean, variance matrix \(\Sigma_{\varepsilon\varepsilon} > 0 \) and finite fourth cumulants.

(b) The determinantal equation \(|I_n - J(L)L| = 0 \) has roots on or outside the unit circle, i.e., \(|L| \geq 1 \).

(c) \(A = I + \alpha \beta' \) where \(\alpha \) and \(\beta \) are \(n \times r \) matrices of full column rank \(r \), \(0 \leq r \leq n \). (If \(r = 0 \) then \(A = I \); if \(r = n \) then \(\beta \) has rank \(n \) and \(\beta'y_t \) and hence \(y_t \) are (asymptotically) stationary.)

(d) \(\alpha'_\perp (J^*(1) - I_n) \beta'_\perp \) is nonsingular, where \(\alpha'_\perp \) and \(\beta'_\perp \) are \(n \times (n - r) \) matrices of full column rank such that \(\alpha'_\perp \alpha = 0 = \beta'_\perp \beta \). (If \(r = 0 \) then we take \(\alpha'_\perp = I_n = \beta'_\perp \).)

Under Assumption VAR, \(y_t \) has \(r \) cointegrating vectors (the columns of \(\beta \)) and \(n - r \) unit roots. Condition VAR(d) ensures that the Granger representation theorem applies, so that \(\Delta y_t \) is stationary, \(\beta'y_t \) is stationary, and \(y_t \) is an I(1) process when \(r < n \). These conditions are now standard in the study of VAR's with some unit roots and are discussed more fully elsewhere, e.g. Johansen (1988, 1991) and Toda and Phillips (1991).

Our attention will focus on unrestricted estimation of the system (24), where the regressors have both stationary and nonstationary components but the dimension \((n - r) \) of the latter is unknown a priori. In studying this problem it is helpful to transform the system so that it conforms to our analysis in Section 4 of the paper, thereby allowing us to make use of the theory developed here. We can do so without loss of generality in the following way.

First let the columns of \(\beta \) be orthonormal. (This can be achieved with no loss of generality, and no issues of identification of individual cointegrating relations will arise in our work, so we need not be concerned with the problems raised in Park (1990) and Phillips and Park (1991).) Construct the orthogonal matrix \(H = [\beta, \beta'_\perp] = [H_1, H_2] \), say and define \(y'_t = H'y_t \). The system (24) transforms to

\[y'_t = J^*(L) \Delta y'_{t-1} + A y'_{t-1} + \varepsilon'_t, \]

where the transformed coefficients are

\[A = H'AH, \quad J^*(L) = H'J^*(L)H, \quad \varepsilon'_t = H'\varepsilon_t, \quad \Sigma_{\varepsilon\varepsilon} = H'\Sigma_{\varepsilon\varepsilon} H. \]
We emphasize that H is unknown but that the asymptotic properties of regression estimators in (24) can be studied via the properties of the corresponding estimators in (24') by simply reversing the transformations given in (26). For example, if \hat{A} is the unrestricted OLS estimator of A in (24') then $\hat{A} = H\hat{A}H'$ where \hat{A} is the OLS estimator of A in (24), and so on.

We partition y_t according to the partition of H as

$$
(27) \quad y_t = \begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} H_1 y_t \\ H_2 y_t \end{bmatrix} = \begin{bmatrix} I(0) \\ I(1) \end{bmatrix} n - r.
$$

Note that the matrix A in (24') has the specific partitioned form

$$
(28) \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I_r + \beta'\alpha & 0 \\ \beta'_\perp \alpha & I_{n-r} \end{bmatrix}.
$$

The $r \times n - r$ zero submatrix A_{12} in (28) delivers $r(n - r)$ restrictions on the matrix A. These restrictions on A correspond to the reduced rank (or cointegration) restrictions on the matrix $A - I = \alpha \beta'$. Observe that there are $2nr$ parameters in the matrix product $\alpha \beta'$ but only $nr + r(n - r) = 2nr - r^2$ identified parameters. We can, of course, choose to write the cointegrating matrix β' as $\beta' = [I_r, B]$ leading to $r(n - r)$ identified parameters in the submatrix B. These parameters together with the nr "factor loading" parameters in the matrix α produce the $2nr - r^2$ identified parameters of the $\alpha \beta'$ matrix product. The $r(n - r)$ zero matrix A_{12} in (28) on the other hand is clearly identified as a submatrix of the coefficient matrix A in the system (24'). As such it can be regarded as the parameterization in (24') of the identified components of the cointegrating matrix β' in the original system (24) with $A = I + \alpha \beta'$.

Notice, in addition, from (28) that the submatrix A_{22} has the special form $A_{22} = I_{n-r}$. Here the coefficient matrix A_{22} embodies the $n - r$ unit roots that occur in the original system (24) and relates these unit roots specifically to the subsystem of (24') that corresponds to the generating mechanism for the $I(1)$ process y_{2t}.

Define $z_t = (\Delta y_{t-1}^r, \ldots, \Delta y_{t-k+1}^r)'$ and $J = [J_1^r, \ldots, J_{k-1}^r]$. Then (24') can be written more simply as

$$
(29) \quad y_t = Jz_t + A_{12}y_{t-1} + \varepsilon_t
$$
or, in partitioned form, as

$$
(30a) \quad y_{1t} = J_1 z_t + A_{11} y_{1t-1} + A_{12} y_{2t-1} + \varepsilon_{1t},
$$

$$
(30b) \quad y_{2t} = J_2 z_t + A_{21} y_{1t-1} + A_{22} y_{2t-1} + \varepsilon_{2t}.
$$

Using the explicit form of $A_{12} = 0$ and $A_{22} = I$ from (28), the true form of this system is

$$
(31a) \quad y_{1t} = J_1 z_t + A_{11} y_{1t-1} + \varepsilon_{1t},
$$

$$
(31b) \quad y_{2t} = y_{2t-1} + u_{2t}, \quad u_{2t} = \varepsilon_{2t} + J_2 z_t + A_{21} y_{1t-1}.'
In (31a) we can arrange initial conditions so that the variables $y_{1,t}$ and z_t are stationary. Hence, $A_{12} = 0$ in (30a) necessarily; otherwise the regression would be spurious. In (31b) $y_{2,t}$ is I(1), there are $n - r$ unit roots in the equation, and the error $u_{2,t}$ is stationary.

We will need the long-run covariance matrix of $\eta_t = (\xi_t, u_{2,t})$ in the theory that follows and we accordingly introduce the matrix

$$\Omega_{\eta\eta} = \begin{bmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{bmatrix} = \begin{bmatrix} \Sigma_{\xi_1\xi_1} & \Sigma_{\xi_1u_2} \\ \Sigma_{u_2\xi_1} & \Sigma_{u_2u_2} \end{bmatrix}$$

partitioning the final matrix above conformably with $(\xi_t, u_{2,t}) = (\xi_{1,t}, \xi_{2,t}, u_{2,t})$. With this notation in hand, we define the conditional long-run variance matrices

$$\Omega_{\xi\xi} = \Sigma_{\xi\xi} - \Omega_{\xi\eta}^{-1}\Omega_{\xi\xi} \Omega_{\eta\eta}^{-1}\Omega_{\eta\xi} = \begin{bmatrix} \Sigma_{\xi_1\xi_1} - \Omega_{\xi_1\eta_1}^{-1}\Omega_{\xi_1\xi_2} \\ \Sigma_{u_2\xi_1} - \Omega_{u_2\eta_1}^{-1}\Omega_{u_2\xi_2} \end{bmatrix}$$

Observe that in (32) and in the formulae just given we use the fact that ξ_t is iid under Assumption VAR(a) and therefore $\Omega_{\xi\xi} = \Sigma_{\xi\xi}$.

We now estimate (29) by FM regression. Write (29) in matrix form as

$$Y' = X' + \Delta Z'_{t-1} + E' = F X' + E'$$

and let $Q_Z = I - Z(Z'Z)^{-1}Z'$ and $\Delta Y'_{t-1} = Y'_{t-1} - Y'_{t-2}$. The FM regression estimator of F in (29') is

$$\hat{F}^+ = \left[J^+ : \hat{A}^+ \right] = \left(Y'Z' : Y'_{t-1} - T\hat{A}_{\xi\Delta y}^+ \right) (X'X)^{-1}$$

In these formulae $\hat{A}_{\xi\Delta y}$, $\hat{\Delta}_{\xi\Delta y}$ are kernel estimates of the long-run covariance matrices of $(\hat{e}_{t} = y_{t} - \hat{F}_{\xi t}, \Delta y_{t-1})$ and Δy_{t-1}, respectively. Similarly, $\hat{A}_{\Delta y\Delta y}$ and $\hat{\Delta}_{\Delta y\Delta y}$ are kernel estimates of the one-sided long-run covariances of $(\hat{e}_{t} = y_{t} - \hat{F}_{\xi t}, \Delta y_{t-1})$ and Δy_{t-1}, respectively.

Note that in constructing \hat{F}^+ we use the endogeneity correction that involves the use of Y^+ only where it is needed, i.e. with respect to the levels regressors Y_{-1} in (29'). The regressors z_t in (29) are lagged differences $\Delta y_{t-1}, (i = 1, \ldots, k - 1)$ which are known to be I(0) and therefore correction with respect to the estimation of their coefficient matrix J is known to be unnecessary.

In addition, under Assumption VAR(a) the error e_t in (29) is a martingale difference and it is therefore not necessary to make a serial correlation correction with respect to the term $E'y_{-1}$. More specifically, under VAR(a) we know that $\Delta e \Delta y = \sum_{j=0}^{\infty} E(\hat{e}_{t-1} \Delta y_{t-1}) = 0$ and, hence, we can exclude the term $T\hat{A}_{\xi\Delta y}$ in (34) with no affect on the asymptotics. Although the limit distribution is unaffected by the inclusion or exclusion of $T\hat{A}_{\xi\Delta y}$, there may be some advantage arising from reduced variance in small samples from excluding the term. This gives us the following adjusted formula for \hat{F}^+:

$$\hat{F}^+ = \left[Y'Z' : Y'_{t-1} - \hat{\Delta}_{\xi\Delta y} \hat{\Delta}_{\xi\Delta y}^{-1} \left(\Delta Y'_{t-1} Y'_{t-1} - T\hat{A}_{\Delta y\Delta y} \right) \right] (X'X)^{-1}.$$
A further partitioning of \((29') \) is useful in the development of our asymptotic theory. This is because some elements of \(Y'_{-1} \) are stationary (corresponding to \(y_{1t-1} \)) and some are nonstationary (the elements of \(y_{2t-1} \)). We therefore write \((29') \) as

\[
(29'') \quad Y' = F_1X'_1 + F_2X'_2 + E',
\]

where \(x'_1 = (z', y'_{1t-1}) \) is the composite vector of stationary regressors and \(x_2t = y_{2t-1} \) is the vector of full rank nonstationary regressors. In this form, \((29'') \) corresponds with the earlier model \((3') \) of Section 3 and we can therefore avail ourselves of the earlier theory that relates to this model more readily.

The limit distribution of \(\hat{F}^+ \) is given as follows.

5.1. THEOREM (FM-VAR Limit Theory): Under Assumptions KL, BW, and VAR,

(a) \(\sqrt{T}(\hat{F}^+ - F_1) \to_d N(0, \Sigma_{x'x} \otimes \Sigma_{11}^{-1}) \) where \(\Sigma_{11} = E(x_{1t}, x'_{1t}) \); and

(b) \(T(\hat{F}^2 - F_2) \to_d (J_0dB_{22}B_2^{-1})(J_0B_2B_2^{-1})^{-1} \), where \(B_{22} = B_2 - \Omega_{22}^{-1}B_2 = BM(\Omega_{22}^{-1}) \), \(B_2 = BM(\Omega_{22}) \), and \(\Omega_{22} = \Omega_{22} \otimes \Omega_{22}^{-1} \).

The bandwidth expansion rates under which (a) and (b) hold are the same as those given in Theorem 4.1. In particular, both (a) and (b) hold when the bandwidth \(K = O_e(T^k) \) and \(1/4 < k < 2/3 \), i.e. BW(i).

The limit distributions given in parts (a) and (b) above are statistically independent.

5.2. COROLLARY (Stationary VAR Case): When \(r = n \) and under Assumptions VAR, KL, and BW with bandwidth expansion rate \(K = O_e(T^k) \) for \(1/4 < k < 1 \), we have

\[
\sqrt{T}(\hat{F}^+ - F) \to_d N(0, \Sigma_{x'x} \otimes \Sigma_{x'x}^{-1})
\]

where \(\Sigma_{x'x} = E(x_{1t}, x'_{1t}) \).

5.3. COROLLARY (VAR with \(n \) Unit Roots): When \(r = 0 \) and under Assumptions VAR, KL, and BW with bandwidth expansion rate \(K = O_e(T^k) \) for \(0 < k < 1 \), we have

\[
\sqrt{T}(\hat{F}_1^+ - F_1) = \sqrt{T}(\hat{F}^+ - F) \to_d N(0, \Sigma_{x'x} \otimes \Sigma_{11}^{-1})
\]

and

\[
T(\hat{F}_2^+ - I_n) = T(\hat{A}^+ - I) \to_p 0;
\]

i.e. \(\hat{F}_2^+ \) is hyperconsistent for \(I_n \) in the sense that its rate of convergence exceeds the usual \(O(T) \) rate.

5.4. REMARKS: (a) Theorem 5.1 shows that the limit theory for the FM regression estimator \(\hat{F}^+ \) is normal and mixed normal. Note that in the case of
part (b) of Theorem 5.1 we have
\[
\left(\int_0^1 dB_{e2} B'_2 \right) \left(\int_0^1 B_2 B'_2 \right)^{-1/2} = N(0, \Omega_{ee2} \otimes I)
\]
and then
\[
T \left(\hat{F}_{e2} - F_2 \right) \rightarrow_d \int_{G = \int_0^1 B_2 B'_2 > 0} N(0, \Omega_{ee2} \otimes G^{-1}) dP(G).
\]

Of special significance is the fact that a submatrix of F_2 involves the $n - r$ unit roots of the system. Thus, from (28) we have
\[
F_2 = \begin{bmatrix} 0 \\ I_{n-r} \end{bmatrix} = \begin{bmatrix} \hat{F}_{e21} \\ \hat{F}_{e22} \end{bmatrix}, \quad \text{say}.
\]

In consequence, part (b) of Theorem 5.1 can be decomposed into the following two parts:

(35) \[T \hat{F}_{e21} \rightarrow_d \left(\int_0^1 dB_{e12} B'_2 \right) \left(\int_0^1 B_2 B'_2 \right)^{-1}, \]

and

(36) \[T \left(\hat{F}_{e22} - I \right) \rightarrow_d \left(\int_0^1 dB_{e22} B'_2 \right) \left(\int_0^1 B_2 B'_2 \right)^{-1}. \]

The latter result (36) shows the surprising outcome that in FM-VAR estimation when there are some unit roots in the system, there are no limiting distributions of the unit root (or matrix unit root) type. All the limit theory is normal or mixed normal irrespective of the number of unit roots or the dimension of the cointegrating space (provided $r > 0$) and with r unknown a priori.

(b) When $r = 0$, there are no cointegrating vectors in the system and the nonstationary part of the system is a full set of unit roots of dimension n. In this case Corollary 5.3 applies and we have hyperconsistent estimation of all of the unit roots in the system by FM regression. This gives a matrix generalization of an earlier result by the author (1992a) on hyperconsistent estimation of a unit root in a single equation model with one unit root. As shown in the single equation case, the precise rate of hyperconsistency depends on the bandwidth expansion rate.

(c) The mixed normal limit given in (35) for the submatrix F_{e21} relates to the cointegrating space restrictions. As explained in the discussion following (28) the submatrix F_{e21} (which is the same as the submatrix A_{12} in (28)) has true value zero and in the transformed system (see equations (29) and (31a)) this can be regarded as a parameterization of the identified components of the cointegrating matrix β'. In other words, when β' is a cointegrating matrix $y_{1t} = \beta' \hat{y}_t$ is stationary and equation (31a) for y_{1t} involves only stationary variables, because $F_{e21} = 0$ (equivalently, $A_{12} = 0$ in (28)) eliminates the nonstationary variables.
\[y_{2t} = \beta' y_t \], from this equation. Loosely speaking, therefore, we can regard the limit distribution of \(T_n^{+} \) given in (35) as relating to the errors of estimation of the identifiable components of the cointegrating matrix. The following simple example taken from Section 2 will help to illustrate. Suppose \(\beta' = (I_r + BB')^{-1/2}[I_r, -B] \) for some \(r \times n - r \) matrix \(B \) and the original system (23) is

\[
y_t = Ay_{t-1} + \varepsilon_t, \quad \text{with} \quad A = \begin{bmatrix} 0 & B \\ 0 & I_{n-r} \end{bmatrix}.
\]

The first subsystem of this equation is the cointegrating relation

(37) \[y_{1t} = B y_{2t-1} + \varepsilon_{1t}, \]

and the second is the I(1) relation

(38) \[y_{2t} = y_{2t-1} + \varepsilon_{2t}. \]

We now transform this system using the orthogonal matrix

\[
H = [\beta'; \beta_\perp] = \begin{bmatrix} I \\ -B' \end{bmatrix}(I + BB')^{-1/2} - B'(I + BB')^{-1/2}.
\]

We obtain, following (24) and (26), the new system

(39) \[y_t = H'AH y_{t-1} + \varepsilon_t = Ay_{t-1} + \varepsilon_t, \]

with

\[
A = \begin{bmatrix} 0 & 0 \\ (I + B'B)^{1/2} B'(I + BB')^{-1/2} & I_{n-r} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ A_{21} & I \end{bmatrix}.
\]

Explicitly,

(37') \[y_{1t} = \varepsilon_{1t}, \]

(38') \[y_{2t} = A_{21} y_{1t-1} + y_{2t-1} + \varepsilon_{2t}. \]

The cointegrating relation (37) is replaced in the transformed system by the stationary relation (37'). What was, in (37), the matrix of identified cointegrating coefficients (viz. \(B \)) is replaced in (37') by the zero coefficient matrix for the nonstationary variable \(y_{2t-1} \). The I(1) relation (38) is replaced in (38') with a system of full \((n - r) \) unit roots and some additional stationary inputs (viz. \(A_{21} y_{1t-1} \)).

(d) The explicit form (38') helps to explain why the FM-VAR estimates of the unit root coefficient matrix \(F_{22} = I_{n-r} \) have a mixed normal limit distribution rather than the conventional matrix unit root distribution. The latter would arise if we ran the regression of \(y_{2t} \) on \(y_{2t-1} \) giving the estimate \(F_{22}^* = (Y_{22} Y_{22, -1} Y_{22, -1} Y_{22, -1})^{-1} \), which has the limit theory

(40) \[T(F_{22}^* - I_{n-r}) \rightarrow_d \left(\int_0^1 dB_2 B_2^2 \right) \left(\int_0^1 B_2 B_2^2 \right)^{-1}. \]
What happens in the case of the FM-VAR estimator \hat{F}_{22}^+ is that the coefficient of y_{2t-1} in (38') is treated as a cointegrating coefficient matrix and because of the endogeneity correction in the FM procedure the FM estimation errors depend on the "endogeneity corrected" errors from this equation, viz. $\varepsilon_{2t}^+ = \varepsilon_{2t} - \Omega_{\varepsilon_2 u_2}^{-1} u_{2t} O_{\varepsilon_2 u_2}^{-1} u_{2t}$, where $u_{2t} = \varepsilon_{2t} + A_{21} y_{1t-1}$. Thus, because of the presence of the stationary component $A_{21} y_{1t-1}$ in (38'), var(ε_{2t}^+) > 0, and ε_{2t}^+ has long-run zero covariance with u_{2t}. Consequently, the limit Brownian motion $B_{\varepsilon_2^+}(r) = B_{\varepsilon_2^+}(r)$ that arises from partial sums of ε_{2t}^+ is independent of the Brownian motion $B_u(r)$ that arises from y_{2t-1}, i.e. from partial sums of u_{2t}. In contrast to (40), the limit distribution of the FM estimator is $(\int_0^1 dB_{\varepsilon_2^+} B_2') (\int_0^1 B_2 B_2')^{-1}$ and the independence of $B_{\varepsilon_2^+}$ and B_2 ensures that this limit distribution is mixed normal.

(e) The explanation of the mixed normal limit distribution for the unit roots estimator \hat{F}_{22}^+ just given in Remark (d) also applies to subsystem estimation of unit roots. Thus, suppose we treat (38') as a subsystem of (39) but estimate (38') independently. The limit theory for the FM estimator of the unit roots matrix $F_{22} = I$ is the same and is mixed normal, again because of the presence of the stationary component y_{1t-1} in this regression. When this additional stationary component is not present in the regression the FM estimator is hyperconsistent because in this case $\varepsilon_{2t} = u_{2t}$, and so $\varepsilon_{2t}^+ = 0$ a.s., which leads to the fact that $T(\hat{F}_{22}^+ - I) \rightarrow_{p} 0$, just as in Corollary 5.3.

(f) The limit theory given in Theorem 5.1 can be compared with that of the OLS estimator $\hat{F} = [\hat{F}_1; \hat{F}_2] = Y'X(X'X)^{-1}$. We have the following theorem.

5.5. THEOREM (Levels VAR Limit Theory): Under Assumption VAR the limit theory for the OLS regression estimator $\hat{F} = [\hat{F}_1; \hat{F}_2]$ is

(a) $\sqrt{T} \left(\hat{F}_1 - F_1 \right) \rightarrow_d N(0, \Sigma_{\varepsilon_e} \otimes \Sigma_{11}^{-1})$,

(b) $T(\hat{F}_2 - F_2) \rightarrow_d \left(\int_0^1 dB_{\varepsilon_2} B_2' \right) \left(\int_0^1 B_2 B_2' \right)^{-1}$

\begin{equation}
= \left(\int_0^1 dB_{\varepsilon_2} B_2' \right) \left(\int_0^1 B_2 B_2' \right)^{-1} + \Omega_{\varepsilon_2} \Omega_{22}^{-1} \left(\int_0^1 dB_2 B_2' \right) \left(\int_0^1 B_2 B_2' \right)^{-1}.
\end{equation}

5.6. REMARK: Note that the limit theory for the OLS estimator of the stationary component F_1 in Theorem 5.5(a) is identical to that of the FM estimator. The limit theory of \hat{F}_2 given in (b) has two components. The first is identical to the limit theory for the FM-VAR estimator \hat{F}_{22}^+. The second is a matrix root distribution whose overall importance depends on the magnitude of the coefficient matrix $\Omega_{\varepsilon_2} \Omega_{22}^{-1}$. Note that from (31b) we have the representation $u_{2t} = \varepsilon_{2t} + J_{22} z_t + A_{21} y_{1t-1}$, so that u_{2t} involves ε_{2t} as one of its components. Consequently, Ω_{ε_2} will be nonzero. Indeed, when there are no additional stationary elements in equation (31b) (i.e. when $J_{22} = 0, A_{21} = 0$) we have $u_{2t} = \varepsilon_{2t}$. In this case, $\Omega_{\varepsilon_2} \Omega_{22}^{-1} = \Omega_{\varepsilon_2 \varepsilon_2} \Omega_{\varepsilon_2 \varepsilon_2}^{-1} = I_{n-r}$ and only the second
component of (41) is retained in the sub block corresponding to F_{22} because $B_{22} = 0$ a.s. When this occurs, the limit distribution of the levels VAR estimator F_{22} is the matrix unit root distribution, i.e.,

$$T(F_{22} - I) \rightarrow_d \left(\int_0^1 dB_2 B_2' \right)^{-1} \left(\int_0^1 B_2 B_2' \right)^{-1}.$$

This is precisely the case when the FM-VAR estimator F_{22} is hyperconsistent for $F_{22} = I$ and therefore when F_{22} dominates F_{22} by virtue of its faster rate of convergence. Q.E.D.

Finally in this section we will consider the limit theory for the FM estimator in the original coordinate system. Recall that in the original VAR coordinates (see equations (23) and (24)) we have $y_t = H y_t$. Using the matrix H to transform (24'), and hence (29), back to the original coordinates we obtain

$$y_t = H z_t + H A H' y_{t-1} + \epsilon_t = H z_t + A y_{t-1} + \epsilon_t$$

This is precisely the case when the FM-VAR estimator F_{22} is hyperconsistent for $F_{22} = I$ and therefore when F_{22} dominates F_{22} by virtue of its faster rate of convergence. Q.E.D.

Finally in this section we will consider the limit theory for the FM estimator in the original coordinate system. Recall that in the original VAR coordinates (see equations (23) and (24)) we have $y_t = H y_t$. Using the matrix H to transform (24'), and hence (29), back to the original coordinates we obtain

$$y_t = H z_t + H A H' y_{t-1} + \epsilon_t = H z_t + A y_{t-1} + \epsilon_t$$

The FM-VAR estimator of F in these original coordinates has the form

$$\hat{F}^+ = \left[Y' Z; Y' Y_{k-1} - \hat{\Theta}_{ey}, Y_y = (\Delta Y_{k-1} Y_{k-1} - T \hat{\Delta}_y \hat{\Delta}_y) \right] (X' X)^{-1}$$

and can be computed directly from the original data using this formula.

F^+ as given in (43) can be obtained from F^+ in (30') by reversing the coordinate system, i.e.,

$$F^+ = H F^+ (I_k \otimes H') = H \left[\hat{F}^+, \hat{A}^+ \right] (I_k \otimes H'),$$

and this connection enables us to deduce the limit theory for F^+ from that which we have derived for F^+. Thus, we have the following theorem.

5.7. **THEOREM (FM-VAR Limit Theory in Original Coordinates):** Under the conditions of Theorem 5.1,

(a) $\sqrt{T} (F^+ - F) \rightarrow_d N(0, \Sigma_{ee} \otimes G \Sigma_{11}^{-1} G')$,

where

$$G = \begin{bmatrix} I_{k-1} \otimes H & 0 \\ 0 & \beta \end{bmatrix}_{nk \times (n(k-1) + r)}$$

Alternatively,

(a') $\sqrt{T} (F^+ - F) G \rightarrow_d N(0, \Sigma_{ee} \otimes \Sigma_{11}^{-1})$; and

(b) $T(F^+ - F) G_{\perp} \rightarrow_d \left(\int_0^1 dB_2 B_2' \right)^{-1} \left(\int_0^1 B_2 B_2' \right)^{-1}$,

where

$$G'_{\perp} = \begin{bmatrix} 0; \beta' \end{bmatrix}_{(n-r) \times nk}.$$
5.8. REMARK: The limit theory for the OLS levels VAR estimator \(\hat{F} \) is obtained in the same way as \((a')\) and \((b)\) of Theorem 5.7 using the results of Theorem 5.5. For this estimator we have:

\[
\sqrt{T} (\hat{F} - F) G \to_d N(0, \Sigma_{ee} \otimes \Sigma_{11}^{-1}),
\]

and

\[
T (\hat{F} - F) G \perp \to_d \left(\int_0^1 dB_1 B_2 \right) \left(\int_0^1 B_2 B_2^T \right)^{-1}.
\]

So, in stationary directions, \(\hat{F} \) is asymptotically equivalent to the FM estimator \(F^* \). But the estimators differ in nonstationary directions, where the rate of convergence is \(O(T) \). The limit theory for the FM-VAR estimator in nonstationary directions is mixed normal. This involves: (i) the identified components of the cointegrating matrix, where the limit theory of the FM estimator corresponds to that of the optimal estimator (see Phillips (1991a)); and (ii) the matrix of unit roots in the system, where the limit theory of the FM estimator is again mixed normal and, when the system has a full set of unit roots, is actually hyperconsistent. The levels VAR estimator \(\hat{F} \) is \(O(T) \) consistent in nonstationary directions, but involves: (i) second-order bias (i.e. simultaneous equations bias) effects in the estimation of the identified components of the cointegrating matrix; and (ii) a composite of a matrix unit root distribution and a mixed normal in the estimation of the system's unit roots. The bias effects and matrix unit root distribution arise because of the dependence of the two Brownian motions \(B_1 \) and \(B_2 \) that appear in (45) and were discussed earlier in Remark 5.6. Asymptotic theory therefore clearly favors the FM-VAR estimator because of its better properties in nonstationary directions.

6. HYPOTHESIS TESTING IN FM-VAR REGRESSION

For testing purposes we use the VAR model (24) in original coordinates and write this for convenience in condensed format as we have done earlier in (42), to repeat here:

\[
y_t = F x_t + \varepsilon_t, \quad F = [J, A], \quad \varepsilon_t \equiv \text{iid} (0, \Sigma_{ee}).
\]

Suppose we wish to test restrictions such as

\[
\mathcal{H}_0: R \text{ vec } F = r, \quad R(q \times n^2 k) \text{ of rank } q.
\]

When \(R \) has the Kronecker structure \(R = R_1 \otimes R_2 \), then \(\mathcal{H}_0 \) has the simpler form

\[
\mathcal{H}_0': R_1 F R_2 = R
\]

for some suitable matrix \(R \). This set up corresponds to the framework used for our analysis of hypothesis testing in Section 4—see the earlier Remarks 4.4(h) and (i). A special case of \(\mathcal{H}_0' \) that arises in VAR modelling that is of particular
importance in practice is the case of causality restrictions. In the notation of
equation (24) the hypothesis that the subvector $y_{3i}(n_3 \times 1)$ has no Granger-causal
effect on the subvector $y_{1i}(n_1 \times 1)$ would be formulated as

$$H_0^i: J_{i13}^* = 0 \quad (i = 1, \ldots, k - 1), \quad A_{13} = 0.$$

In (47) this would correspond to the following settings of the restriction matrices:

$$R_1 = \begin{bmatrix} I_{n_1} \end{bmatrix}, \quad R_2 = I_k \otimes \begin{bmatrix} 0 \\ I_{n_3} \end{bmatrix}, \quad R = 0. \quad (49)$$

For unrestricted levels VAR estimation of (42) Wald tests of the causality
restrictions (48) have been used extensively in past empirical research. An
asymptotic theory for such tests that accommodates nonstationary data has
recently been developed for trivariate systems in Sims, Stock, and Watson (1990)
and in full generality by Toda and Phillips (1993). These authors show that when
the VAR system has some unit roots and some cointegrating relations, the
asymptotic theory of Wald tests of (48) involves nuisance parameters and
nonstandard distributions that make a valid asymptotic basis for inference very
awkward. Toda and Phillips (1993, Theorem 1) show that the form of the limit
distribution depends on the rank of a certain submatrix of the cointegrating
matrix. But the cointegrating matrix is estimated only indirectly in levels VAR
estimation, and since, as we have discussed earlier in Remark 5.8, the limit
theory for these VAR estimates of the cointegrating matrix involve nonstan-
dard distributions and nuisance parameters, it is not possible to provide an
asymptotic theory that justifies the general use of VAR regressions for causality
testing at least in correctly specified models.

On the other hand, we can artificially augment the correct order of the VAR
so that normal asymptotics obtain with respect to the coefficient matrices up to
the correct lag order (much as \hat{F}_1 is asymptotically normal in Theorem 5.5(a))
and then asymptotic chi-squared tests of causality restrictions can be applied to
the submatrix of the coefficients up to the correct order. This idea was explored
in some recent work by Toda and Yamamoto (1993) and relates to a similar
suggestion made by Choi (1993) for avoiding nonstandard distributions in scalar
unit root tests. The method is interesting but does involve the inefficiency, which
may be costly in terms of the method's power properties, of having to estimate
coefficient matrices for surplus lags.

The alternative approach we explore is to use Wald tests based on the
FM-VAR regression estimator. From Theorem 5.7(a) we have

$$\sqrt{T}(\hat{F}^+ - F) \rightarrow_d \mathcal{N}(0, \Sigma_{ee} \otimes G \Sigma_{11}^{-1} G''),$$

and since $T(X'X)^{-1} \rightarrow_p G \Sigma_{11}^{-1} G''$ we consider using the
asymptotic approximation

$$\sqrt{T}(\hat{F}^+ - F) \sim \mathcal{N}(0, \hat{\Sigma}_{ee} \otimes T(X'X)^{-1}). \quad (50)$$
just as in (14'). To test \mathcal{H}_0' the natural Wald statistic is then

$$W_F^+ = T(R \text{vec } \hat{F}^+ - r) \left[R \left\{ \hat{S}_{ee} \otimes T(X'X)^{-1} \right\} R \right]^{-1} (R \text{vec } \hat{F}^+ - r).$$

When

$$(RKG) \quad \text{rank} \left[R \left\{ \hat{S}_{ee} \otimes G \hat{S}_{11}^{-1} G' \right\} R' \right] = q$$

we have $W_F^+ \to_d \chi^2_q$, and standard limit theory applies.

When (RKG) fails the situation is different. We follow the analysis in Section 4 of this case, now in a VAR setting. (RKG) fails when the restrictions in \mathcal{H}_0 relate to some of the nonstationary coefficients. We therefore focus again on the case of \mathcal{H}_0 where $R = R_1 \otimes R_2'$ and $R_2 = \text{diag}[R_{2J}, R_{2A}]$ is $nk_1 \times (q_J + q_A)$, so that the restrictions can be written out explicitly as $R_1FR_2 = R_1[J : A]R_2 = R$, or

$$\mathcal{H}_0'' : R_1J R_{2J} = R_J \quad \text{and} \quad R_1AR_{2A} = R_A.$$

Next suppose that R_{2A} has the form

$$R_{2A} = \begin{bmatrix} R_{21} & R_{22} \end{bmatrix} = \begin{bmatrix} H_1, H_2 \\ q_{21}, q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} H_1S_{20}, H_1S_{h1} + H_2S_{h2} : H_2S_{22} \end{bmatrix},$$

with $q_A = q_{21} + q_{22}$, and for some matrices S_{20}, S_{h1}, S_{h2}, and S_{22}, just as in (18).

The hypotheses about A that correspond to the columns R_{22} of R_{2A} in \mathcal{H}_0'' relate to nonstationary coefficients. Observe that

$$R_{22} = \begin{bmatrix} R_{22}J(I_{k-1} \otimes H) & 0 \\ 0 & R_{21} \beta \end{bmatrix} = \begin{bmatrix} R_{22}'(I_{k-1} \otimes H) & 0 \\ 0 & R_{21}' \beta \end{bmatrix},$$

which is of deficient row rank and therefore condition (RKG) fails. The situation is entirely analogous to the one studied in Remark 4.4(j). We have the following analogue of Theorem 4.5 for the VAR case.

6.1. Theorem (FM - VAR Wald Test Asymptotics): Under Assumptions KL, BW(i), and VAR with $0 < r < n$, the Wald statistic W_F^+ for testing the hypothesis $\mathcal{H}_0'' : R_1FR_2 = R$ has a limit distribution that is a mixture of χ^2 variates. In particular, when R_2 has the form $R_2 = \text{diag}(R_{2J}, R_{2A})$ whose dimension is $nk_1 \times (q_J + q_A)$ and where R_{2A} is given by (52), we have the limit

$$W_F^+ \to_d \chi^2_{q_J^2} + \sum_{i=1}^{q_1} \chi^2_{q_{21}}(i) + \sum_{j=1}^{q_1} d_j \chi^2_{q_{22}}(j) = \chi^2_{q_J(q_J + q_{21})} + \sum_{j=1}^{q_1} d_j \chi^2_{q_{22}}(j)$$

where $\chi^2_{q_{22}}(j) \equiv \text{iid}(\chi^2_{q_{22}})(j = 1, \ldots, q_1)$ and are independent of the $\chi^2_{q_J(q_J + q_{21})}$ member of the last equation of (54). The coefficients $d_j (j = 1, \ldots, q_1)$ that appear in (54) are the latent roots of the matrix $(R_1Q_{ee}R_1')R_1S_{ee}R_1^{-1}$.

This content downloaded from 130.132.173.38 on Wed, 14 May 2014 09:50:33 AM
All use subject to JSTOR Terms and Conditions
6.2. **Remarks:** (a) Since \(\Omega_{ee-2} = \Sigma_{ee} - \Omega_{ee}^{-1}\Omega_{e2}^2 \Omega_{2e}^{-1} \), the latent roots \(d_j \) \((j = 1, \ldots, q) \) in (54) satisfy \(0 < d_j \leq 1 \), just as in Theorem 4.5. Hence the earlier Remarks 4.6(a)–(d) are also relevant here. In particular, tests that are conservative asymptotically can always be constructed using a \(\chi^2_{q(q_j + q_A)} \) limit distribution as this is an upper bound for (54). Similarly, asymptotically liberal tests can be constructed using the \(\chi^2_{q(q_j + q_A)} \) limit distribution when the Wald test statistic \(W^+_F \) uses the error variance matrix estimate \(\hat{\Omega}_{ee-2} = \hat{\Sigma}_{ee} - \hat{\Omega}_{ee}^{-1}\hat{\Omega}_{e2}^2 \hat{\Omega}_{2e}^{-1} \) in place of \(\hat{\Sigma}_{ee} \) in formula (51).

(b) It will be of interest to explore how close the actual size of the tests suggested in Remark (a) are in relation to the nominal size of the bounding variate \(\chi^2_{q_j + q_A} \) in finite sample simulations. This approach could also be usefully compared with the sequential testing procedure suggested in Toda and Phillips (1993) and the lag augmented regression procedure of Toda and Yamamoto (1993) that was mentioned earlier.

(c) The case \(r = 0 \) is rather special. In this case there are no cointegrating vectors and the limit theory of Corollary 5.3 for the FM-VAR estimator \(\hat{F}^+ \) applies. Obviously, in this case a VAR in differences could be run. But since the fact that there is a full set of \(n \) unit roots in the system is unknown in general we do need to consider the effects on \(\hat{F}^+ \) and related tests. From Corollary 5.3 we know that \(\hat{F}^+_2 = \hat{A}^+ \) is hyperconsistent for the unit root matrix \(I_n \). In this case, also, tests based on the statistic \(W^+_F \) and a \(\chi^2_{q} (q = q(q_j + q_A)) \) limit theory will be conservative, as the following theorem shows.

6.3. **Theorem:** Under the Assumptions of Theorem 6.1 but with \(r = 0 \) (so that there is a full set \(A = I_n \) of \(n \) unit roots in the system (42)) the limit distribution of the Wald statistic \(W^+_F \) for testing \(r^2 = RFR_2 = R \) is given by

\[
W^+_F \overset{d}{\rightarrow} \chi^2_{q(q_j + q_A)},
\]

where \(q_j = \text{rank}(R_{2J}) \) and \(R_{2J} \) is the leading submatrix of the restriction matrix \(R_2 = \text{diag}(R_{2J}, R_{2A}) \).

6.4. **Remark:** When \(q_j = 0 \) we have \(W^+_F \overset{d}{\rightarrow} \chi^2_{q} \) in place of (55). This follows directly from the hyperconsistency of \(\hat{A}^+ \). In this case we would accept the null hypothesis with probability tending to unity as \(T \rightarrow \infty \) (i.e. the actual size of a test based on a \(\chi^2_{q} \) limit would tend to zero as \(T \rightarrow \infty \)). Use of a more efficient estimator, like \(\hat{A}^+ \) in this case, therefore does not always lead to a better test. The estimator also needs to be efficient under the alternative for that to be so and the correct size of the test must also be employed. When the number of unit roots in the system is unknown, as we assume in this paper, the size of a test based on \(W^+_F \) will inevitably be conservative in large samples, as we have seen. How this conservatism affects the power of the test in finite samples can be investigated by simulation.
7. CONCLUSION

This paper has developed a general asymptotic theory for time series regression using the principle of fully modified least squares. While the method was originally developed for estimating cointegrated systems, where it delivers optimal estimators of the identified components of a cointegrating matrix under Gaussian assumptions, the paper shows that FM-OLS has some attractive features as a general method of estimation in a wider class of time series models. Essentially it provides an approach to unrestricted regression for time series that takes advantage of data nonstationarity if it is present, without having to be explicit about the presence or number of any unit roots and cointegrating relations.

The main results are as follows.

(i) FM-OLS is applicable in models with either full rank or cointegrated I(1) regressors. In such cases, the limit theory for FM estimates of the stationary components of the regressors is equivalent to that of OLS, while the FM estimates of the nonstationary components retain their optimality properties (i.e. they are asymptotically equivalent to the maximum likelihood estimates of the cointegrating matrix). When the OLS estimates of the stationary components are optimal, then this property is shared by the FM-OLS estimator.

(ii) FM-OLS is applicable even in models with stationary regressors and in this case has the same limit theory as OLS. A case of special importance in practice is the stationary vector autoregression. For this model FM-OLS and OLS have the same asymptotic distribution.

(iii) FM-VAR (fully modified vector autoregression) estimation also has interesting asymptotic properties. For the case of a VAR with a full set of unit roots the FM-VAR estimator is hyperconsistent, with a convergence rate faster than the usual $O_p(T)$ rate, for all elements of the unit root matrix I_p. This includes diagonal and off diagonal elements. When there are stationary components in the VAR, the corresponding FM estimates of these coefficients have the same asymptotic distribution as the (levels VAR) OLS estimates.

(iv) In VAR models with some unit roots and cointegrated variables (a composite system), the FM-VAR estimator has some surprising features. First, FM-VAR estimates of the identified components of the cointegrating matrix have a mixed normal limit theory which is equivalent to that of the optimal estimator in Phillips (1991a) or the reduced rank regression estimator in Johansen (1988). Moreover, optimal estimation of the cointegration space is attained in FM-VAR regression without knowledge of the dimension of the cointegration space and without pretesting for the number of cointegrating vectors. Thus, an investigator can perform an unrestricted regression by FM-VAR and effectively disregard the I(1) or I(0) nature of the data. Any cointegrating relations are implicitly estimated as if one was performing a maximum likelihood estimation of the model with the cointegrating rank known correctly. Since the cointegrating rank is generally not known, this property of FM-VAR estimation is quite appealing and somewhat unexpected.
Second, FM-VAR estimates of the unit roots in a composite system also have mixed normal limits. This means that the limit theory for the FM-VAR estimator is normal for the stationary components of the VAR and mixed normal for the nonstationary components. In other words, there are no unit root limit distributions or matrix unit root limit distributions in FM-VAR estimation. Correspondingly, the FM-VAR estimates of the stationary and nonstationary components of a VAR are all asymptotically median unbiased. This gives the FM-VAR procedure a distinct advantage over OLS levels VAR estimation, where the estimates of the cointegrating vectors suffer in the limit from a second order simultaneous equations bias and estimates of the unit roots in the system have a limit theory that involves unit root distributions.

(v) The normal and mixed normal limit theory for FM time series regression estimates helps to simplify inference. Wald statistics have a limit distribution that is a linear combination of independent chi-squared variates when the hypothesis under test involves both stationary and nonstationary coefficients. If \(q \) is the total number of restrictions, then the \(\chi^2 \) distribution is shown to be an upper bounding variate and therefore the usual \(\chi^2 \) critical values can be used to construct tests that have conservative size. This avoids problems of pre-tests, nuisance parameters, overfitting, and nonstandard limit distributions that arise in other approaches. The theory is applicable to VAR models and causality testing in VAR's.

Cowles Foundation for Research in Economics, Yale University, P.O. Box 208281, New Haven, CT 06520, U.S.A.

Manuscript received June, 1993; final revision received November, 1994.

APPENDIX: PROOFS

8.0 KERNEL ESTIMATES OF \(\Omega \) AND \(\Delta \)

To simplify the presentation of our arguments it will be convenient to assume in our proofs that we are working with long-run covariance matrix estimates that satisfy Assumption KL(a) and (b). This leads to estimates of the form

\[
\hat{\Omega} = \sum_{j=-K+1}^{K-1} w(j/K) \hat{\Gamma}(j), \quad \text{and} \quad \hat{\Delta} = \sum_{j=0}^{K-1} w(j/K) \hat{\Gamma}(j),
\]

which correspond to (6) when the lag kernel is truncated as in KL(b), i.e. \(w(x) = 0 \) for \(|x| > 1 \). The proofs given below for Lemmas 8.1 and 8.4 apply as they stand under KL(a) and (b) and therefore hold for the Parzen and Tukey-Hanning kernels, for example, which satisfy these conditions. The results stated also apply for untruncated kernel estimates that satisfy Assumption KL(b'), like QS kernel estimates, but the proofs need some modification to deal with the fact that the sums in (6) are not truncated.

To illustrate the type of modification needed we look at the proof of part (a) of Lemma 8.1 given below. In this proof we have expression (P1) whose second and third terms now become

\[
(P0) \quad w((T-1)/K) \hat{\Gamma}_{u1}u_{1T}(T-1) - w((-T+1)/K) \hat{\Gamma}_{u1}u_{1T}(-T).
\]
We need (P0) to be $o_p(K^{-2})$ for the remaining arguments in the proof to hold. To show this we observe that

$$\hat{f}(T-1), \hat{f}(-T) = o_p(T^{-1}),$$

and

$$w((T-1)/K), w((-T+1)/K) = O((K/T)^2),$$

in view of KL(b'). Combining these expressions we deduce that (P0) is $O_p(K^2/T^3)$ as $T \to \infty$. Thus, (P0) will be $o_p(1/K^2)$ as required if $K^4/T^3 \to 0$, i.e. for $K = O_p(T^k)$ with $k \in (0,3/4)$. This is certainly true under the bandwidth condition BW(i) of Assumption BW whereby $K = O_p(T^k)$ with k satisfying $k \in (1/4,2/3)$. Similar modifications elsewhere in the proofs of Lemmas 8.1 and 8.4 help to establish the stated results under condition KL(b').

8.1. Lemma: Under Assumptions EC, KL, and BW(iv), the following hold:

(a) $\hat{\Delta}_{\Delta t_1} = -K^{-2} w''(0) \Delta_{11} + o_p(K^{-2});$
(b) $\hat{\Delta}_{\Delta u_1} = K^{-2} w''(0) \Phi_{01} + o_p(1/\sqrt{KT}) + o_p(K^{-2}),$ where

$$\Phi_{01} = \sum_{j=-\infty}^{\infty} (j-1/2) \Gamma_{uu_1}(j), \quad \text{and}$$

$$\hat{\Delta}_{\Delta u_2} = K^{-2} w''(0) \Phi_{21} + o_p(1/\sqrt{KT}) + o_p(K^{-2}),$$

where

$$\Phi_{21} = \sum_{j=-\infty}^{\infty} (j-1/2) \Gamma_{uu_2}(j);$$

(c) $\hat{\Delta}_{\Delta \Delta u_1} = \hat{\Delta}_{\Delta u_0 \Delta u_1} + \Delta_{11} \Delta_{12};$
(d) $\hat{\Delta}_{\Delta \Delta u_1} = \sum_{j=-1}^{\infty} (j-1/2) \Gamma_{\Delta u_1}(j);$

(e) $K^2 \left[T^{-1} \Delta U_1 \Delta_{11} + o_p(1/\sqrt{KT}) \right] \to_p w''(0) \Delta_{11} + o_p(1/\sqrt{KT});$

(f) $T^{-1} \Delta U_1 \Delta_{11} = K^{-2} w''(0) \Psi_{21} + o_p(1/\sqrt{KT}) + o_p(K^{-2}),$ where

$$\Psi_{21} = \sum_{j=-\infty}^{\infty} (j-1/2) \Gamma_{\Delta u_2}(j);$$

(g) $T^{-1} \Delta U_1 \Delta_{11} \to_1 \Delta U_1 \Delta_{11} \Delta_{12} = T^{-1} \Delta U_1 \Delta_{11} + o_p(1/\sqrt{KT}) + o_p(K^{-2}),$ where

$$\Psi_{12} = \sum_{j=-\infty}^{\infty} (j+1/2) \Gamma_{\Delta u_1}(j);$$

(h) $\hat{\Delta}_{\Delta u_1} = \Delta_{\Delta u_1} + o_p(1/\sqrt{KT});$

(i) $\hat{\Delta}_{\Delta u_2} = \Delta_{\Delta u_2} + o_p(K/T)^{1/2};$

(j) $T^{-1} \Delta U_1 \Delta_{11} \to_1 \Delta U_1 \Delta_{12} = \Delta_{\Delta u_2} + o_p(K/T)^{1/2};$

(k) $T^{-1} \Delta U_1 \Delta_{11} \to_1 \Delta U_1 \Delta_{12} = \Delta_{\Delta u_2} + o_p(K/T)^{1/2};$

(l) $T^{-1} \Delta U_1 \Delta_{11} \to_1 \Delta U_1 \Delta_{12} = \Delta_{\Delta u_2} + o_p(K/T)^{1/2};$
The error terms of $O_p(1/\sqrt{KT})$ that appear in (b), (f), (g), and (h) are sharp. The same applies to the terms of $O_p(K^{3/2}/T^{1/2})$ and $O_p(K^{1/2}/T^{1/2})$ that appear in (d) and (i).

8.2. DISCUSSION: (i) Result (a) shows that $\hat{\theta}_{\Delta u_t, \Delta u_t} = O_p(K^{-2})$, giving the rate at which $\hat{\theta}_{\Delta u_t, \Delta u_t}$ converges to the zero matrix in the limit. Note that one consequence of the explicit representation of the limit of $K^2\hat{\theta}_{\Delta u_t, \Delta u_t}$ is that we can describe the behavior of its inverse, viz.

$$K^{-2}\hat{\theta}_{\Delta u_t, \Delta u_t}^{-1} \to_p (1/w''(0)) \Omega_{11}^{-1}.$$

(ii) Results (b) and (c) show that $\hat{\theta}_{\Delta u_t}$ also converges to a zero matrix, but at a rate that may differ from that of $\hat{\theta}_{\Delta u_t, \Delta u_t}$ depending on the expansion rate of K as $T \to \infty$. In particular, if $K = O_e(T^k)$ (with $k > 1/4$ as in Assumptions BW(i)-(iii)) we get

$$K^2\hat{\theta}_{\Delta u_t} = w''(0)\Phi_0 + O_p(K^{3/2-T^{-1/2}}) + o_p(1)$$

$$\to_p w''(0)\Phi_0, \text{ for } k < 1/3$$

whereas

$$K^2\hat{\theta}_{\Delta u_t} = O_p(T^{3k/2-T^{-1/2}})O_p(1) + o_p(1)$$

$$\to_p w''(0)\Phi_0, \text{ for } k > 1/3,$$

i.e.

$$\hat{\theta}_{\Delta u_t} = O_p(1/\sqrt{KT}) = O_e(T^{-k/2-1/2})O_p(1), \text{ for } k > 1/3.$$

Thus, for $K = O_e(T^k)$ with $1/4 < k < 1/3$ the rate of convergence of $\hat{\theta}_{\Delta u_t}$ to zero is the same as that of $\hat{\theta}_{\Delta u_t, \Delta u_t}$. But for $K = O_e(T^k)$ with $k > 1/3$ the convergence rate of $\hat{\theta}_{\Delta u_t}$ to zero is slower than that of $\hat{\theta}_{\Delta u_t, \Delta u_t}$. This difference and the way in which it depends on the expansion rate of K is important. In particular, it affects the order of magnitude of terms that appear in the expansion of the estimation errors of the stationary component in the model (3').

(iii) From result (d) of the lemma we see that the first block submatrix of $\hat{\theta}_{\Delta h, \Delta h}$ has some elements that are of order $O_p((K^2/T)^{-1/2})$ and this order is sharp. Thus, if $K = O_e(T^k)$ with $k > 1/3$, then these terms dominate and the elements of this submatrix diverge as $T \to \infty$. However, when condition B(ii) holds (i.e., $1/4 < k < 1/3$), we have

$$\hat{\theta}_{\Delta h, \Delta h} = O_p(1/\sqrt{KT}) = O_e(T^{-k/2-1/2})O_p(1), \text{ for } k > 1/3.$$

And this matrix is well behaved as $T \to \infty$. Thus, even though some elements of $\hat{\theta}_{\Delta h, \Delta h}$ diverge as $T \to \infty$ (corresponding to the fact that some elements of $u_{it} = (\Delta u_{i1}, u_{i2})$ are I(-1) processes with a null long-run covariance matrix), the matrix product $\hat{\theta}_{\Delta h, \Delta h}^{-1}$ has a finite probability limit, at least when $K = O(T^k)$ and $1/4 < k < 1/3$.

(iv) Remarks similar to (a) and (b) above apply also to the results (e), (f), and (g) for the correction terms that involve one-sided long-run covariance matrix estimates. These remarks indicate that the bandwidth expansion rate has an important role to play in our asymptotics when there are stationary components in the estimated model, like x_{it} in (3').

(v) Proofs of (a)-(l) are given in the next section. The procedure we follow in deriving (a)–(i) is closely related to the analysis of the asymptotic bias and variance matrix of spectral estimates, with the main differences arising from the treatment of the degeneracies that arise from the presence of $I(-1)$ variables, or first differences. It is particularly helpful to decompose the kernel estimates so that weighted sums of autocovariances of differences are written in terms of differenced weights of sums of autocovariances. The properties of the kernel weighting function can then be used to greater effect in determining the order of magnitude of the degeneracies that occur and the bandwidth expansion rates under which they apply. There is little that is new in the manner of these derivations, but it does not seem possible to obtain the results given in (a)–(i) directly from the
existing literature. Results on the asymptotic bias of spectral estimates do apply to $I(-1)$ processes and are relevant, but seem to require sharper limitations on the bandwidth expansion rate than are needed here. For example, from Hannan (1970, Theorem 10, p. 283) we deduce that

$$\lim_{T \to \infty} K^2 E(\hat{\theta}_{\Delta u_1 \Delta u_1}) = (w''(0)/2) \sum_{j=-\infty}^{\infty} j^2 \gamma_{\Delta u_1 \Delta u_1}(j)$$

\[= -w''(0) \sum_{j=-\infty}^{\infty} \gamma_{\Delta u_1}(j) = -w''(0) \mathcal{D}_{11}\]

(for the first equality set $q = 2$, $\hat{f}(0) = \hat{\theta}_{\Delta u_1 \Delta u_1}/2$, and $k_2 = -w''(0)/2$ in formula (4.9), p. 283 of Hannan (1970)), giving the correct limiting mean of part (a). However, Hannan's theorem requires $K \to \infty$ and $K^2/T \to 0$ as $T \to \infty$, i.e. $K = O_{p}(T^{k})$ with $k < 1/2$, whereas our derivation of part (a) requires $K \to \infty$ and only $K/T \to 0$, i.e. $K = O_{p}(T^{k})$ with $0 < k < 1$. The less restrictive result is useful because it leads to a broader range of allowable bandwidth expansion rates in our asymptotic estimation theory.

8.3. PROOF OF LEMMA 8.1: Part (a): We proceed by evaluating the mean and variance of the dominating terms of $K^2 \hat{\theta}_{\Delta u_1 \Delta u_1}$. By definition

(P1) \[\hat{\theta}_{\Delta u_1 \Delta u_1} = \sum_{j=-K+1}^{K-1} w(j/K) \hat{F}_{\Delta u_1 \Delta u_1}(j) = \sum_{j=-K+1}^{K-1} w(j/K) \left[\hat{F}_{\Delta u_1 \Delta u_1}(j) - \hat{F}_{\Delta u_1 \Delta u_1}(j-1) \right] \]

\[= \sum_{j=-K+1}^{K-2} \left[w(j/K) - w((j+1)/K) \right] \hat{F}_{\Delta u_1 \Delta u_1}(j) + w((K-1)/K) \hat{F}_{\Delta u_1 \Delta u_1}(K - 1) \]

Under the summability condition in Assumption EC(a) it is easy to show that

(P2) \[\sum_{j=0}^{\infty} j^p \| \Gamma(j) \| < \infty.\]

Here $\Gamma(K) = E(u_{t,K}, u') = o(1/K^p)$ as $K \to \infty$. Further, var ($\hat{F}(K)$) = $O(T^{-1})$, as shown for example in Hannan (1970, p. 212) and thus

(P3) \[\hat{F}(K - 1), \hat{F}(-K) = O_{p}(T^{-1/2}) + o(K^{-p}) = o_{p}(1) \quad \text{as } T \to \infty.\]

under BW. Moreover, KL implies that

(P4) \[w((K-1)/K), w((-K+1)/K) = O(K^{-2}),\]

so that the second and third terms of (P1) are $o_{p}(K^{-2})$.

This leaves us with the first term of (P1) which we write as

(P5) \[\sum_{j=-K+1}^{K-2} \left[w(j/K) - w((j+1)/K) \right] \hat{F}_{\Delta u_1 \Delta u_1}(j) \]

\[= \left(\sum_{\theta_k} + \sum_{\theta^*} \right) \left[w(j/K) - w((j+1)/K) \right] \hat{F}_{\Delta u_1 \Delta u_1}(j) \]
where \(\mathcal{B}_* = \{j : |j| \leq K^*\} \) and \(\mathcal{B}^* = \{j : |j| > K^*, -K + 1 \leq j \leq K - 2\} \) for some \(K^* = K^b \) with \(0 < b < 1 \). Under KL we can use the following Taylor development for \(w((j + 1)/K) \) when \(|j| \leq K^* \) and \(K \to \infty \):

\[
w((j + 1)/K) - w(j/K) = w'(j/K)(1/K) + (1/2)w''(0)(1/K^2)(1 + o(1)) = w''(0)(j/K^2)(1 + o(1)) + (1/2)w''(0)(1/K^2)(1 + o(1)).
\]

The first sum in (P5) is then

\[
-K^2w''(0)\left\{ \sum_{\mathcal{B}_*} jI_{u_1, c_{u_1}}(j) + (1/2)\sum_{\mathcal{B}_*} j^2I_{u_1, c_{u_1}}(j) \right\}[1 + o(1)].
\]

The mean of the term in braces is

\[
\sum_{|j| \leq K^*} j(1 - |j|/T)\Gamma_{u_1, c_{u_1}}(j) + (1/2)\sum_{|j| \leq K^*} (1 - |j|/T)\Gamma_{u_1, c_{u_1}}(j)
\]

\[
= \sum_{j = -\infty}^{\infty} j\Gamma_{u_1, c_{u_1}}(j) + (1/2)\sum_{j = -\infty}^{\infty} \Gamma_{u_1, c_{u_1}}(j)
\]

\[
= \sum_{j = -\infty}^{\infty} j\Gamma_{u_1, c_{u_1}}(j) = \sum_{j = -\infty}^{\infty} j\Gamma_{u_1, c_{u_1}}(j) - \sum_{j = -\infty}^{\infty} j\Gamma_{u_1, c_{u_1}}(j + 1)
\]

(P6)

\[
= \sum_{j = -\infty}^{\infty} \Gamma_{u_1, c_{u_1}}(j) = \Omega_{11}.
\]

Note that the limit in the second line above follows because \(\|\Sigma_{-\infty}^{\infty} j^2\Gamma_{u_1, c_{u_1}}(j)\| = \|\Sigma_{-\infty}^{\infty} (2j - 1)\Gamma_{u_1, c_{u_1}}(j)\| < \infty \), in view of (P2). The second sum in (P5) is

\[
\sum_{\mathcal{B}^*} (w((j + 1)/K) - w((j + 1)/K))\hat{\Gamma}_{u_1, c_{u_1}}(j) = K^{-1}\sum_{\mathcal{B}^*} w'(\theta_j)\hat{\Gamma}_{u_1, c_{u_1}}(j)
\]

where \(j/K < \theta_j < (j + 1)/K \). This expression has mean given by

\[
K^{-1}\sum_{\mathcal{B}^*} w'(\theta_j)(1 - |j|/T)\Gamma_{u_1, c_{u_1}}(j),
\]

whose modulus is dominated above by

\[
\left(\sup_{|j| \leq K} |w'(\theta_j)| \right) K^{-1}\sum_{|j| > K^*} \|\Gamma_{u_1, c_{u_1}}(j)\|
\]

\[
\leq \text{constant} K^{-1}\sum_{|j| > K^*} \sum_{s = 0}^{\infty} \|C_s\|\|C_{s+j}\|
\]

\[
\leq \text{constant} K^{-1}K^{* - a}\sum_{|j| > K^*} \sum_{s = 0}^{\infty} (s + j)^a\|C_s\|\|C_{s+j}\|
\]

\[
\leq \text{constant} K^{-1}K^{* - ab}\sum_{s = 0}^{\infty} \|C_s\|\sum_{r = 0}^{\infty} r^a\|C_r\|
\]

\[
= O(K^{-1 - ab}).
\]

Note from EC(a) that \(a > 1 \). We may therefore select \(K^* = K^b \) with \(0 < b < 1 \) in such a way that \(ab > 1 \) (i.e. choose \(b \) so that \(1/a < b < 1 \)). Then the mean of the second sum in (P5) has order \(o(K^{-2}) \) as \(K \to \infty \), and therefore the mean of (P5) is dominated by the first term, whose limit is (P6).
Next we consider the variance matrix of (P5). We start by writing:

\[
\sum_{j = -K + 1}^{K - 2} [w(j/K) - w((j + 1)/K)] \hat{I}_{\alpha_1 \alpha_1}(j)
\]

\[
= -K^{-1} \sum_{j = -K + 1}^{K - 2} w'(j/K) \hat{I}_{\alpha_1 \alpha_1}(j)[1 + O(1/K)]
\]

\[
= -K^{-1} \sum_{j = -K + 1}^{K - 2} \left[w'(j/K) \hat{I}_{u_1 u_1}(j) - w'(j/K) \hat{I}_{u_1 u_1}(j + 1) \right][1 + O(1/K)]
\]

\[
= -K^{-1} \left\{ \sum_{j = -K + 1}^{K - 2} \left[w'(j/K) - w'((j - 1)/K) \right] \hat{I}_{u_1 u_1}(j) \right. \\
- w'((K - 2)/K) \hat{I}_{u_1 u_1}(K - 1) + w'((-K + 1)/K) \hat{I}_{u_1 u_1}(-K + 1) \left. \right\}
\]

\[
\times [1 + O(1/K)]
\]

\[
(P7)
\]

\[
= -K^{-2} \sum_{j = -K + 2}^{K - 2} w''((j - 1)/K) \hat{I}_{u_1 u_1}(j) + o_p(1/K^2),
\]

using the fact that under KL \(w'((-K + 2)/K), w'(-K + 2)/K) = O(1/K), \) and \(\hat{I}_{u_1 u_1}(K - 1), \) \(\hat{I}_{u_1 u_1}(-K + 2) = O_p(T^{-1/2}) + o(K^{-a}), \) as in (P3) above. We now consider the variance matrix of the leading term of (P7). We can follow Theorem 9 of Hannan (1970, p. 280) on the asymptotic covariance matrix of spectral estimates because the leading term of (P7) has the same form as a spectral estimate at the origin and \(w''(x) \) is continuous and uniformly bounded under KL. Doing so, we get

\[
(P8) \quad \lim_{T \to \infty} K^3 T \text{var} \left[\text{vec} \left(\sum_{j = -K + 2}^{K - 2} w''((j - 1)/K) \hat{I}_{u_1 u_1}(j) \right) \right]
\]

\[
= \lim_{T \to \infty} K^3 T K^{-4} \text{var} \left[\text{vec} \left(\sum_{j = -K + 2}^{K - 2} w''((j - 1)/K) \hat{I}_{u_1 u_1}(j) \right) \right]
\]

\[
= \lim_{T \to \infty} \frac{1}{K} \text{var} \left[\text{vec} \left(\sum_{j = -K + 2}^{K - 2} w''((j - 1)/K) \hat{I}_{u_1 u_1}(j) \right) \right]
\]

\[
= \text{constant}.
\]

Hence the variance of the dominant terms of (P7) and (P5) is \(O(1/T K^3) \).

We deduce from (P1), (P5), (P6), (P7), and (P8) that

\[
\hat{I}_{\alpha_1 \alpha_1} = -K^{-2} w''(0) \Omega_{11} + o_p(K^{-2}) + O_p(K^{-3/2} T^{-1/2})
\]

\[
= -K^{-2} w''(0) \Omega_{11} + o_p(K^{-2}),
\]

for \(K \) satisfying BW. We note that the \(O_p(K^{-3/2} T^{-1/2}) \) term in the above is a sharp bound because it arises directly from the convergence rate given in (P8). However, for \(K = O_p(T^k) \) with \(1/4 < k < 2/3 \) as under BW(i), this term is \(o_p(K^{-2}) \) and the stated result follows.
Part (b): Part (b) of the lemma is proved in a similar way. We have

\[
\hat{\Omega}_{u_0 u_1} = \sum_{j = -K+1}^{K-1} w(j/K) \hat{f}_{u_0 u_1}(j)
\]

\[
= \sum_{j = -K+1}^{K-1} \left[w(j/K) \hat{f}_{u_0 u_1}(j) - w((j-1)/K) \hat{f}_{u_0 u_1}(j-1) \right]
\]

\[
= \sum_{j = -K+2}^{K-1} \left[w(j/K) - w((j-1)/K) \right] \int_{u_0}^{(j-1)/K} \nabla w_{(j-1)/K} \left(\int_{u_0}^{(j-1)/K} \rho(K) \right) + w((-K+1)/K) \hat{f}_{u_0 u_1}^{(-K+1)}(j)
\]

\[
= \sum_{j = -K+2}^{K-1} \left[w(j/K) - w((j-1)/K) \right] \int_{u_0}^{(j-1)/K} \nabla w_{(j-1)/K} \left(\int_{u_0}^{(j-1)/K} \rho(K) \right) + o_p(K^{-2})
\]

just as in the analysis following (P1). We write the first term of (P9) as

\[
\left(\sum_{B_x} + \sum_{B_x^*} \right) \left[w(j/K) - w((j-1)/K) \right] \hat{f}_{u_0 u_1}(j)
\]

and using the Taylor development of \(w(j/K) - w((j-1)/K) \) the first sum in (P10) is

\[
K^{-2} w''(0) \left(\sum_{\left| j \right| \leq K^*} (j-1)(1 - |j|/T) \Gamma_{u_0 u_1}(j) + (1/2) \sum_{\left| j \right| \leq K^*} \Gamma_{u_0 u_1}(j) \right) \right) [1 + o(1)]
\]

The mean of the term in braces in (P11) is

\[
\sum_{\left| j \right| \leq K^*} (j-1)(1 - |j|/T) \Gamma_{u_0 u_1}(j) + (1/2) \sum_{\left| j \right| \leq K^*} (1 - |j|/T) \Gamma_{u_0 u_1}(j)
\]

\[
\rightarrow \sum_{j = -\infty}^{\infty} (j-1/2) \Gamma_{u_0 u_1}(j).
\]

The second sum in (P10) is

\[
K^{-1} \sum_{B_x^*} w''((j-1)/K) \hat{f}_{u_0 u_1}(j)[1 + O(1/K)],
\]

whose mean is given by

\[
K^{-1} \sum_{B_x^*} w''((j-1)/K) \Gamma_{u_0 u_1}(j)[1 + O(1/K)],
\]

The modulus of (P12) is dominated above by

\[
\left(\sup_x \left| w'(x) \right| \right) K^{-1} \sum_{\left| j \right| > K^*} \| \Gamma_{u_0 u_1}(j) \| (1 + O(1/K)) = O(K^{-1-a})
\]

just as in the proof of part (a), and for \(1/a < b < 1 \) this expression is \(o(K^{-2}) \) as \(K, T \to \infty \).

It follows that the mean of \(\hat{\Omega}_{u_0 u_1} \) is dominated by the first term of (P9) which is \(O(K^{-2}) \), as in (P11). In particular,

\[
K^2 E(\hat{\Omega}_{u_0 u_1}) \to w''(0) \sum_{j = -\infty}^{\infty} (j-1/2) \Gamma_{u_0 u_1}(j).
\]
Next we consider the variance matrix of the leading term in (P9), i.e.,
\[
\sum_{j=-K+2}^{K-1} \left[w(j/K) - w((j-1)/K)\right] \hat{F}_{\Delta u_1}(j)
\]
\[= K^{-1} \sum_{j=-K+2}^{K-1} w'((j-1)/K) \hat{F}_{\Delta u_1}(j)[1 + O(K^{-1})].
\]
As in the analysis of (P8) above, we now have
\[
\lim_{T \to \infty} \frac{1}{KT} \text{var} \left\{ \sum_{j=-K+2}^{K-1} w'((j-1)/K) \hat{F}_{\Delta u_1}(j) \right\}
\]
\[= \lim_{T \to \infty} \frac{1}{K} \text{var} \left\{ \sum_{j=-K+2}^{K-1} w'((j-1)/K) \hat{F}_{\Delta u_1}(j) \right\} = \text{constant}.
\]
Thus, the variance matrix of the dominant term in (P9) is $O(1/KT)$. We deduce that
\[
\hat{\Omega}_{\Delta u_1} = K^{-2} w''(0) \sum_{j=-\infty}^{\infty} \left(1 - 1/2\right) \Gamma_{\Delta u_1}(j) + O_p(K^{-1/2} T^{-1/2}) + O_p(K^{-2}).
\]
The $O_p(K^{-1/2} T^{-1/2})$ term in the above expression is sharp because it arises from the explicit convergence rate for the variance given in (P9). For K satisfying BW either of the error terms may dominate, as discussed in Remark 8.2(ii) above. This gives the first expression of Part (b).

The second expression, for the limit behavior of $\hat{\Omega}_{\Delta u_1}$, is proved in precisely the same way.

Part (c): To prove part (c) we need to show that
\[
\hat{\Omega}_{\Delta u_1} = \hat{\Omega}_{\Delta u_1} = \hat{\Omega}_{\Delta u_1} + O_p(1/T).
\]

Now
\[
\hat{\Omega}_{\Delta u_1} = \hat{\Omega}_{\Delta u_1} - \sum_{j=-K+1}^{K-1} w(j/K)(\hat{A} - A) \hat{F}_{\Delta u_1}(j)
\]
\[= \hat{\Omega}_{\Delta u_1} - \left\{ \begin{array}{c}
- w((K-1)/K)(\hat{A} - A) \hat{F}_{\Delta u_1}(K) \\
+ w((-K+1)/K)(\hat{A} - A) \hat{F}_{\Delta u_1}(-K+1) \\
+ \sum_{j=-K+2}^{K-1} \left[w(j/K) - w((j-1)/K)\right] \hat{F}_{\Delta u_1}(j) \end{array} \right\}.
\]

The second and third terms of (P13) are $O_p(T^{-1})$ because $w((K-1)/K), w((-K+1)/K) = O(K^{-2}), A - A = O_p(1/\sqrt{T}), \hat{F}_{\Delta u_1}(K) = O_p(1)$, and $K = O(T^{1/4+\varepsilon})$ for some $\varepsilon > 0$ under BW. The fourth term of (P13) is
\[
\sum_{j=-K+2}^{K-1} \left[w(j/K) - w((j-1)/K)\right] \hat{F}_{\Delta u_1}(j)
\]
\[= \sum_{j=-K+2}^{K-1} \left[w(j/K) - w((j-1)/K)\right] \hat{F}_{\Delta u_1}(j)
\]
\[+ \sum_{j=-K+2}^{K-1} \left[w(j/K) - w((j-1)/K)\right] \hat{F}_{\Delta u_1}(j)
\]
\[= \sum_{j=-K+2}^{K-1} \left[w(j/K) - w((j-1)/K)\right] \hat{F}_{\Delta u_1}(j)
\]
\[+ \sum_{j=-K+2}^{K-1} \left[w(j/K) - w((j-1)/K)\right] \hat{F}_{\Delta u_1}(j).
\]
The first sum in (P14) can be decomposed as in (P10) and (P11). Using the fact that \(\hat{A}_1 - A_1 = O_p(T^{-1/2}) \), we find that the first term of (P14) is \(O_p(1/\sqrt{KT})O_p(1/\sqrt{T}) = o_p(T^{-1}) \). For the second term of (P14) we note that \(\hat{A}_2 - A_2 = O_p(T^{-1}) \) and

\[
\sum_{j=-K+2}^{K-1} \left[w(j/K) - w((j-1)/K) \right] \hat{\xi}_{2u_1}(j) = K^{-1} \sum_{j=-K+2}^{K-1} w'(\theta) \hat{\xi}_{2u_1}(j) = O_p(1),
\]

as in the proof of Theorem 3.1 of Phillips (1991c, pp. 432–433). Thus (P14) is at most \(O_p(T^{-1}) \) and part (c) of the lemma follows.

Part (d): We prove part (d) of the lemma by using the partitioned inversion of \(\Omega_{nh}^{-1} \), which yields

\[
\hat{\Omega}_{0h} \hat{\Omega}_{nh}^{-1} = \hat{\Omega}_{0u_1} \hat{\Omega}_{u_1u_1}^{-1} - \hat{\Omega}_{0u_1} \hat{\Omega}_{u_1u_2} \hat{\Omega}_{u_2u_2} \hat{\Omega}_{u_2u_2}^{-1} \hat{\Omega}_{u_2u_1} \hat{\Omega}_{u_1u_1}
\]

\[
= [X_{01}, X_{02}], \text{ say},
\]

where \(\hat{\Omega}_{u_2u_2}^{-1} = \hat{\Omega}_{u_2u_2} - \hat{\Omega}_{u_2u_1} \hat{\Omega}_{u_1u_2} \hat{\Omega}_{u_2u_2}^{-1} \hat{\Omega}_{u_2u_1} \hat{\Omega}_{u_1u_1} \). Using parts (a)–(c) of the lemma we find that

\[
\hat{\Omega}_{u_2u_2}^{-1} = \hat{\Omega}_{u_2u_2} + O_p(K^{-2}) + O_p(K/T) + O_p(K^{-1/2}T^{-1/2})
\]

\[
= \hat{\Omega}_{u_2u_2} + o_p(1) \rightarrow p \Omega_{22} > 0,
\]

\[
X_{01} = \hat{\Omega}_{0u_1} \hat{\Omega}_{u_1u_1}^{-1} - \hat{\Omega}_{0u_1} \hat{\Omega}_{u_1u_2} \hat{\Omega}_{u_2u_2} \hat{\Omega}_{u_2u_1} \hat{\Omega}_{u_2u_1} \hat{\Omega}_{u_1u_1}
\]

\[
= [- \Phi_{01} + O_p(K^{3/2}/T^{1/2})] \Omega_{11}^{-1} - [- \Phi_{01} + O_p(K^{3/2}/T^{1/2})] \times \Omega_{11}^{-1}[O_p(K^{-2}) + O_p(K/T)][\Omega_{22} + o_p(1)]^{-1}[- \Phi_{21} + O_p(K^{3/2}/T^{1/2})] \Omega_{11}^{-1}
\]

\[
- [- \Phi_{02} + o_p(1)][\Omega_{22} + o_p(1)]^{-1}[- \Phi_{21} + O_p(K^{3/2}/T^{1/2})] \Omega_{11}^{-1}
\]

\[
= - [- \Phi_{01} - \Phi_{02} \Omega_{22}^{-1} \Phi_{21}] \Omega_{11}^{-1} + O_p(K^{3/2}/T^{1/2}) + o_p(K^{3/2}/T^{1/2}),
\]

and

\[
X_{02} = - \hat{\Omega}_{0u_1} \hat{\Omega}_{u_1u_2} \hat{\Omega}_{u_2u_2} \hat{\Omega}_{u_2u_1} \hat{\Omega}_{u_2u_1} \hat{\Omega}_{u_1u_1}
\]

\[
= - [- \Phi_{01} + O_p(K^2/\sqrt{KT})][- \Omega_{11} + o_p(1)]^{-1}[O_p(K^{-2}) + O_p(1/\sqrt{KT})]
\]

\[
+ \Omega_{22} \Omega_{22}^{-1} + o_p(1)
\]

\[
= \Omega_{22} \Omega_{22}^{-1} + o_p(1).
\]

The term \(O_p(K^{3/2}/T^{1/2}) \) in the final expression for \(X_{01} \) is a sharp order of magnitude because it is \(K^2 \) times the \(O_p(K^{-1/2}T^{-1/2}) \) sharp error term in the expression for \(\hat{\Omega}_{u_0u_1} \) obtained in Part (b). This establishes part (d).
Part (e): To prove part (e) we consider

\[T^{-1} \Delta U'_1 U_1 - \Delta \hat{u}_1 \Delta \hat{u}_1 = T^{-1} \Delta U'_1 U_1 - \sum_{j=0}^{K-1} w(j/K) \hat{F}_{\Delta \hat{u}_1 \Delta \hat{u}_1}(j) \]

\[= T^{-1} \Delta U'_1 U_1 - \sum_{j=0}^{K-1} w(j/K) \left[\hat{F}_{\Delta \hat{u}_1 \Delta \hat{u}_1}(j) - \hat{F}_{\Delta \hat{u}_1 \Delta \hat{u}_1}(j+1) \right] \]

\[= - \sum_{j=1}^{K-1} [w(j/K) - w((j-1)/K)] \hat{F}_{\Delta \hat{u}_1 \Delta \hat{u}_1}(j) - w((K-1)/K) \hat{F}_{\Delta \hat{u}_1 \Delta \hat{u}_1}(K) \]

\[(P15) \]

\[= - \sum_{j=1}^{K-1} [w(j/K) - w((j-1)/K)] \hat{F}_{\Delta \hat{u}_1 \Delta \hat{u}_1}(j) + o_p(K^{-2}) \]

using (P3) and (P4). As in the analysis that follows (P9) we rewrite the first term of (P15) as

\[(P16) \]

\[- \left(\sum_{j=1}^{K^*} + \sum_{j=K^*+1}^{K-1} \right) [w(j/K) - w((j-1)/K)] \hat{F}_{\Delta \hat{u}_1 \Delta \hat{u}_1}(j). \]

Upon the expansion of \(w(j/K) - w((j-1)/K) \), the first summation in (P16) becomes

\[-K^{-2} w''(0) \sum_{j=1}^{K^*} (j - 1/2) (1 - |j|/T) \Gamma_{\Delta \hat{u}_1 \hat{u}_1}(j) \]

whose leading term has mean

\[-K^{-2} w''(0) \sum_{j=1}^{K^*} \left(j - 1/2 \right) \left(1 - |j|/T \right) \Gamma_{\Delta \hat{u}_1 \hat{u}_1}(j) \]

\[= -K^{-2} w''(0) \sum_{j=1}^{K^*} \left\{ \left(j - 1/2 \right) \Gamma_{\hat{u}_1 \hat{u}_1}(j) - \left(j - 1/2 \right) \Gamma_{\hat{u}_1 \hat{u}_1}(j-1) \right\} + o(K^{-2}) \]

\[= -K^{-2} w''(0) \sum_{j=1}^{K^*} \left(j - 1/2 \right) \Gamma_{\hat{u}_1 \hat{u}_1}(j) \]

\[+ \left(K^* - 1/2 \right) \Gamma_{\hat{u}_1 \hat{u}_1}(0) + o(K^{-2}) \]

\[= -K^{-2} w''(0) \sum_{j=1}^{K^*} \Gamma_{\hat{u}_1 \hat{u}_1}(j) + \left(1/2 \right) \Gamma_{\hat{u}_1 \hat{u}_1}(0) + o(K^{-2}). \]

Thus

\[K^2 E \left[-K^{-2} w''(0) \sum_{j=1}^{K^*} (j - 1/2) \hat{F}_{\Delta \hat{u}_1 \hat{u}_1}(j) \right] \to w''(0) \left[\sum_{j=1}^{\infty} \Gamma_{\hat{u}_1 \hat{u}_1}(j) + (1/2) \Gamma_{\hat{u}_1 \hat{u}_1}(0) \right] \]

\[(P17) \]

The second sum in (P16) is

\[- \sum_{j=K^*+1}^{K-1} [w(j/K) - w((j-1)/K)] \hat{F}_{\Delta \hat{u}_1 \Delta \hat{u}_1}(j) \]

whose mean is given by

\[-K^{-1} \sum_{j=K^*+1}^{K-1} w'((j-1)/K)(1 - |j|/T) \Gamma_{\Delta \hat{u}_1 \hat{u}_1}(j)[1 + O(K^{-1})]. \]
The modulus of this expression is dominated above by

\[
\left(\sup_x |w'(x)| \right) K^{-1} \sum_{j > K} \| \Gamma_{\Delta u_1}(j) \| (1 + O(1/K)) = O(K^{-1-ab}) = o(K^{-2})
\]

for \(1/a < b < 1 \), just as in the proof of part (a). It follows from (P15)–(P19) that

\[
K^2 E \left[T^{-1} U_1^T U_1 - \hat{\Delta}_{u_1 u_1} \right] \rightarrow w''(0) \{ \Delta_{11} - (1/2) \Sigma_{11} \}.
\]

The variance of the dominant term of (P15) may now be shown to be \(O(1/TK^3) \), again as in the proof of part (a), and it follows that

\[
K^2 \left[T^{-1} U_1^T U_1 - \hat{\Delta}_{u_2 u_1} \right] \rightarrow p w''(0) \{ \Delta_{11} - (1/2) \Sigma_{11} \}
\]

as required.

Part (f): To prove part (f) we proceed in the same way as the proof of part (b), the only difference being that the sums are one-sided rather than two-sided. The mean of \(T^{-1} U_2^T U_1 - \hat{\Delta}_{u_2 u_1} \) is \(O(K^{-2}) \) and satisfies

\[
K^2 \left[T^{-1} U_2^T U_1 - \hat{\Delta}_{u_2 u_1} \right] \rightarrow w''(0) \sum_{j=1}^{\infty} (j-1/2) \Gamma_{u_2 u_1}(j) = w''(0) \Psi_{21}.
\]

The variance matrix is of \(O(1/TK) \) and hence

\[
\sqrt{KT} \left\{ T^{-1} U_2^T U_1 - \hat{\Delta}_{u_2 u_1} \right\} - (K^{-2} w''(0) \Psi_{21}) \rightarrow O_p(1)
\]

giving the stated result for part (f).

Part (g): To prove (g) we first note that

\[
T^{-1} U_1^T X_2 - \hat{\Delta}_{u_1 u_2} = T^{-1} U_2^T X_2 - T^{-1} U_{1-1}^T X_2 - \hat{\Delta}_{u_1 u_2}
\]

(P18)

Next, observe that

\[
\hat{\Delta}_{u_1 u_2} + T^{-1} U_{1-1}^T U_2 = \sum_{j=0}^{K-1} w(j/K) \hat{\Gamma}_{u_1 u_2}(j) + \hat{\Gamma}_{u_1 u_2}(-1)
\]

\[
= \sum_{j=0}^{K-1} w(j/K) \left[\hat{\Gamma}_{u_1 u_2}(j) - \hat{\Gamma}_{u_1 u_2}(j-1) \right] + \hat{\Gamma}_{u_1 u_2}(-1)
\]

\[
= \sum_{j=0}^{K-2} \left[w(j/K) - w((j+1)/K) \right] \hat{\Gamma}_{u_1 u_2}(j) + w((K-1)/K) \hat{\Gamma}_{u_1 u_2}(K-1)
\]

\[
= \sum_{j=0}^{K-2} \left[w(j/K) - w((j+1)/K) \right] \hat{\Gamma}_{u_1 u_2}(j) + O_p(K^{-2}).
\]

(P19)

We now proceed as in the proof of part (b) but with a one-sided sum. We find that, for the mean, we have

\[
K^2 \sum_{j=0}^{K-2} \left[w(j/K) - w((j+1)/K) \right] \Gamma_{u_1 u_2}(j) \rightarrow -w''(0) \sum_{j=0}^{\infty} (j+1/2) \Gamma_{u_1 u_2}(j)
\]

and the variance matrix of the first term of (P19) is \(O(1/TK) \). Hence (P19) is

\[
-K^{-2} w''(0) \Psi_{12} + O_p(1/\sqrt{KT}) + o_p(K^{-2}),
\]

and combining this with (P18) we get the stated result for part (g).
Part (h): To prove part (h) we write
\[
\hat{\Delta}_{\hat{u}_0u_1} = \sum_{j=0}^{K-1} w(j/K) \hat{f}_{\hat{u}_0u_1}(j) = \sum_{j=0}^{K-1} w(j/K) \left[\hat{f}_{\hat{u}_0u_1}(j) - \hat{f}_{\hat{u}_0u_1}(j+1) \right]
\]
\[
= \sum_{j=1}^{K-1} \left[w(j/K) - w((j-1)/K) \right] \hat{f}_{\hat{u}_0u_1}(j) + \hat{f}_{\hat{u}_0u_1}(0) - w((K-1)/K) \hat{f}_{\hat{u}_0u_1}(K)
\]
(P20)
\[
= \sum_{j=1}^{K-1} \left[w(j/K) - w((j-1)/K) \right] \hat{f}_{\hat{u}_0u_1}(j) + O_p(K^{-2}T^{-1/2})
\]
since \(\hat{f}_{\hat{u}_0u_1}(0) = T^{-1} \hat{U}_0 U_1 = T^{-1} \hat{U}_0 X_1 = 0 \) by least squares orthogonality, \(w((K-1)/K) = O(K^{-2}) \) and \(\hat{f}_{\hat{u}_0u_1}(K) = O_p(T^{-1/2}) \). Now
\[
\hat{f}_{\hat{u}_0u_1}(j) = \hat{f}_{u_0u_1}(j) + (A - \hat{A}) \hat{f}_{xu_1}(j)
\]
and (P20) becomes
(P21)
\[
\sum_{j=1}^{K-1} \left[w(j/K) - w((j-1)/K) \right] \hat{f}_{\hat{u}_0u_1}(j) + (A - \hat{A}) \hat{f}_{xu_1}(j)
\]
\[
\times \hat{f}_{xu_1}(j) + O_p(K^{-2}T^{-1/2}).
\]
The first term of (P21) has mean zero because
\[
\Gamma_{u_0u_1}(j) = 0 \quad \text{for all } j \geq 0
\]
in view of EC(c). The variance of the first term of (P21) is \(O(1/TK) \), just as shown in part (b). Hence,
(P22)
\[
\sum_{j=1}^{K-1} \left[w(j/K) - w((j-1)/K) \right] \hat{f}_{\hat{u}_0u_1}(j) = O_p(1/\sqrt{KT}),
\]
which is a sharp order of magnitude. Next, the second term of (P21) can be shown to be \(O_p(T^{-1}) \) just as (P14) in the proof of part (c). Thus, combining (P20) and (P22) we have \(\hat{\Delta}_{\hat{u}_0u_1} = O_p(1/\sqrt{KT}) \), as required for part (h).

Part (i): To prove (i) we write
\[
\hat{\Delta}_{\hat{u}_0u_2} = \sum_{j=0}^{K-1} w(j/K) \hat{f}_{\hat{u}_0u_2}(j) = \sum_{j=0}^{K-1} w(j/K) \hat{f}_{\hat{u}_0u_2}(j) + (A - \hat{A}) \sum_{j=0}^{K-1} w(j/K) \hat{f}_{xu_2}(j).
\]
The first term is
\[
\sum_{j=0}^{K-1} w(j/K) \hat{f}_{\hat{u}_0u_2}(j) = \Delta_0 + O_p((K/T)^{1/2})
\]
with a sharp error order, since its mean is
\[
\sum_{j=0}^{K-1} w(j/K)(1 - |j|/T) \Gamma_{u_0u_2}(j) \rightarrow \sum_{j=0}^{\infty} \Gamma_{u_0u_2}(j) = \Delta_0,
\]
and its variance matrix satisfies
\[
\lim_{T \to \infty} \frac{T}{K} \var \left[\vec{\left\{ \sum_{j=0}^{K-1} w(j/K) \hat{f}_{\hat{u}_0u_2}(j) \right\}} \right] = \text{constant},
\]
as in the proof of part (b). This establishes (i).

8.4. Lemma: Under Assumptions EC, KL, and BW(i) we have:

(a) \[
\hat{\Omega}_{0h} \hat{\Omega}_{h1} [T^{-1} \Omega'_{0h} X_h - \hat{\Delta}_{hh}] = \left[O_p(K^{-2}) + O_p(1/\sqrt{KT}) \right] \Omega_{02} \Omega_{22}^{-1} N_{22T} + O_p(T^{-1/2}) + O_p(K^{3/2}/T) + o_p(1)
\]

where \(N_{22T} \to_d \int_0^1 dB_2 B_2 \).

(b) \[
T^{1/2} \hat{\Omega}_{0h} \hat{\Omega}_{h1} [T^{-1} \Omega'_{0h} X_h - \hat{\Delta}_{h\Delta u_1}] = O_p(K^{-2} T^{1/2}) + O_p(K^{-1/2});
\]

(c) \[
T^{1/2} \left[T^{-1} \Omega'_{0h} X_1 - \hat{\Delta}_{0\Delta u_1} \right] = T^{-1/2} \Omega'_{0h} X_1 + O_p(K^{-1/2}) \to_d N(0, \Omega_{11}).
\]

8.5. Discussion: (i) The partition in the matrix that appears in part (a) of Lemma 8.4 corresponds to the separation of the FM correction terms into those that relate to the stationary and nonstationary coefficients, respectively. Part (b) gives the stationary coefficient correction more explicitly (and when it is scaled by \(T^{1/2} \), as it is in the analysis of the limit distribution of the FM estimates of the stationary coefficients). The correction term in this case has magnitude of order \(O_p(K^{-2} T^{1/2}) + O_p(K^{-1/2}) \) which is \(o_p(1) \) when the bandwidth expansion rate \(K = O_p(T^k) \) satisfies \(k > 1/4 \). This is the critical condition for the FM-OLS estimates of the stationary coefficients to be asymptotically equivalent to OLS. Part (c) shows that the FM correction term for serial correlation (in the case of the stationary coefficients) also has no effect asymptotically and is \(O_p(K^{-1/2}) \). Both these results indicate that, at least for the stationary coefficients, the faster the bandwidth expansion rate \(K = O_p(T^k) \), the closer the FM estimates will be to the OLS estimates which under Assumption EC(c) are consistent.

(ii) The second submatrix in the partition that appears in part (a) relates to the FM endogeneity correction for the nonstationary coefficients. For the endogeneity correction to work we want this matrix to be \(o_p(1) \) and to be as close to its dominating term, viz. \(\Omega_{02} \Omega_{22}^{-1} N_{22T} \), as possible. Note that the error in this case involves a term of order \(O_p(K^{3/2}/T) \), which is sharp, in view of Lemma 8.1(d). Thus the correction term operates satisfactorily provided \(K = O_p(T^k) \) with \(0 < k < 2/3 \). In this case, therefore, we do not want the bandwidth to grow too fast with \(T \).

(iii) Combining the effects of the error terms for the stationary and the nonstationary coefficients we see that the correction terms work satisfactorily provided the bandwidth expansion rate \(K = O_p(T^k) \) satisfies \(1/4 < k < 2/3 \), i.e. the rate BW(i) given in Assumption BW.

8.6. Proof of Lemma 8.4: Using parts (d), (e), (f), (g), and (j) of Lemma 8.1, we have

\[
\hat{\Omega}_{0h} \hat{\Omega}_{h1} [T^{-1} \Omega'_{0h} X_h - \hat{\Delta}_{hh}] = \left[-\left(\Phi_{01} - \Omega_{02} \Omega_{22}^{-1} \Phi_{21} \right) \Omega_{11}^{-1} + O_p((K^3/T)^{1/2}) ; \Omega_{02} \Omega_{22}^{-1} + o_p(1) \right] \times \left[\begin{array}{c} T^{-1/2} \Delta U_1 U_1 - \hat{\Delta}_{\Delta U_1 U_1} \\ T^{-1/2} \Delta U_1 U_2 - \hat{\Delta}_{\Delta U_1 U_2} \\ T^{-1/2} \Delta U_2 U_2 - \hat{\Delta}_{\Delta U_2 U_2} \\ \end{array} \right] \times \left[O_p(K^{-2}) \right. \\
\left. O_p(T^{-1/2}) + O_p(K^{-2}) \right. \\
\left. \right] N_{22T}
\]

(P23)

where \(N_{22T} \to_d \int_0^1 dB_2 B_2 \). This proves part (a). Part (b) follows directly from the first block submatrix of (P23) after scaling by \(T^{1/2} \).
Part (c) follows from Lemma 8.1(h) and the CLT (5). Thus,

\[(P24) \quad T^{1/2} \left[T^{-1} U_0' X_1 - \hat{\Delta}_{0,du} \right] = T^{-1/2} U_0' U_1 - T^{1/2} \hat{\Delta}_{0,du} = T^{-1/2} U_0' U_1 + O_p(1/\sqrt{T}) \rightarrow_d N(0, \Omega_{\text{ee}}) .\]

8.7. PROOF OF THEOREM 4.1: We write the FM-OLS estimation error as

\[(P25) \quad \hat{\Delta}^+ - A = (U_0' X - T \hat{\Delta}^+_{ox})(X'X)^{-1} \]

where \(U_0' = U_0 - \hat{\Delta}_{0,x} \hat{\Delta}_{xx}^{-1} \Delta X' \). Transforming this system by \(H \) and partitioning into stationary and nonstationary coefficients, we have

\[(P26) \quad \left(\begin{array}{c} (\hat{\Delta}^+ - A) H_1 \\ (\hat{\Delta}^+ - A) H_2 \end{array} \right) = (\hat{\Delta}^+ - A) H = (U_0' X - T \hat{\Delta}^+_{ox}) H (H' X' X H)^{-1} H' H .\]

Note that by partitioned inversion

\[
(H' X' X H)^{-1} H' H_1 = \begin{bmatrix} I \\ X_1' X_2' \\ X_2' X_1' \end{bmatrix}^{-1} \begin{bmatrix} I \\ - (X_2' Q_1 X_1)^{-1} X_1' X_1 (X_1' X_1)^{-1} \\ (X_2' Q_1 X_2)^{-1} \end{bmatrix} ,
\]

and

\[
(H' X' X H)^{-1} H' H_2 = \begin{bmatrix} I \\ X_1' X_2' \\ X_2' X_1' \end{bmatrix}^{-1} \begin{bmatrix} I \\ - (X_1' X_1)^{-1} X_2' X_2 (X_2' Q_2 X_2)^{-1} \\ (X_2' Q_1 X_2)^{-1} \end{bmatrix} ,
\]

where \(Q_i = I - X_i' (X_i' X_i)^{-1} X_i' \) \((i = 1, 2)\). It follows that

\[
\sqrt{T} ((\hat{\Delta}^+ - A) H_1) = \sqrt{T} \left[T^{-1} U_0' X - \hat{\Delta}_{0,x} \hat{\Delta}_{xx}^{-1} \Delta X' (T^{-1} \Delta X' X) - \hat{\Delta}^+_{ox} \right] \times H \\
= \sqrt{T} \left[T^{-1} U_0' X - \hat{\Delta}_{0,x} \hat{\Delta}_{xx}^{-1} \Delta X' (T^{-1} \Delta X' X) - \hat{\Delta}^+_{ox} \right] \times H \left[H_i (T^{-1} X_1' X_1)^{-1} + O_p(T^{-1}) \right]
= \sqrt{T} \left[T^{-1} U_0' X - \hat{\Delta}_{0,x} \hat{\Delta}_{xx}^{-1} \Delta X' (T^{-1} \Delta X' X) - \hat{\Delta}^+_{ox} \right] \times H \left[H_i (T^{-1} X_1' X_1)^{-1} + O_p(T^{-1}) \right]
= \sqrt{T} \left[T^{-1} U_0' X_1 - \hat{\Delta}_{0,x} \hat{\Delta}_{xx}^{-1} \Delta X' H \right] (T^{-1} X_1' X_1)^{-1} + O_p(T^{-1/2})
= \sqrt{T} \left[T^{-1} U_0' X_1 - \hat{\Delta}_{0,x} \hat{\Delta}_{xx}^{-1} \Delta X' \right] (T^{-1} X_1' X_1)^{-1} + O_p(T^{-1/2})
= \left[T^{-1/2} O_p(K^{-1/2}) \right] - \left[O_p(K^{-2} T^{1/2}) + O_p(K^{-1/2}) \right] (T^{-1} X_1' X_1)^{-1} + O_p(T^{-1/2})
\]

by virtue of Lemma 8.4(b) and (c). Thus

\[(P28) \quad \sqrt{T} ((\hat{\Delta}^+ - A) H_1) = \left(T^{-1/2} O_p(K^{-1/2}) \right) (T^{-1} X_1' X_1)^{-1} + O_p(K^{-2} T^{1/2}) + O_p(K^{-1/2}) + O_p(T^{-1/2}) \rightarrow_d N(0, (I \otimes \Sigma_{11}^{-1}) \Omega_{\text{ee}} (I \otimes \Sigma_{11}^{-1})) ,\]

as required for part (a). From (P29) we also see that the stated result holds for a bandwidth expansion rate \(K = O(T^k) \) with \(1/4 < k < 1 \).
Next, using (P26) and (P27) we have

\[(\hat{\Phi}^+ - \Phi)H_2 = \left[\begin{array}{l} \left(T^{-1}U_0'X - \hat{\Phi}_{0x} \hat{\Phi}_{xx}^{-1}(T^{-1}x'X) - \hat{\Phi}_{0x}^+ \right) \\
\times \left((T^{-1}x'X)^{-1}(T^{-1}x'X_2)(T^{-2}x'Q_xX_2)^{-1} \right) \\
\end{array} \right] \\
= - \left[\left(T^{-1}U_0'X - \hat{\Phi}_{0x} \hat{\Phi}_{xx}^{-1}(T^{-1}x'X) - \hat{\Phi}_{0x}^+ \right) \\
\times \left(H_2^{-1}(T^{-1}x'X)^{-1}(T^{-1}x'X_2)(T^{-2}x'Q_xX_2)^{-1} \right) \\
\right] \\
+ \left[T^{-1}U_0'X - \hat{\Phi}_{0x} \hat{\Phi}_{xx}^{-1}(T^{-1}x'X) - \hat{\Phi}_{0x}^+ \right] H_2 \left(T^{-2}x'Q_xX_2 \right)^{-1} \right] \\
\]

\[(P31) \quad T(A^+ - A) = \left(T^{-1}U_0'X_2 - \hat{\Phi}_{u2} \hat{\Phi}_{hh}^{-1}(T^{-1}U_0'X_2 - \hat{\Phi}_{u2}^+ \right) \\
\times \left((T^{-1}X_2x'X_2) \right)^{-1} \\
+ \left[T^{-1}U_0'X_2 - \hat{\Phi}_{u2} \hat{\Phi}_{hh}^{-1}(T^{-1}U_0'X_2 - \hat{\Phi}_{u2}^+ \right] H_2 \left(T^{-2}x_2'Q_xX_2 \right)^{-1} \right] \\
\]

\[(P32) \quad T(A^+ - A) = \left(\left(T^{-1}U_0'X_2 - \hat{\Phi}_{u2} \hat{\Phi}_{hh}^{-1}(T^{-1}U_0'X_2 - \hat{\Phi}_{u2}^+ \right) \right) \left((T^{-1}X_2x'X_2) \right)^{-1} \\
+ \left[\left(T^{-1}U_0'X_2 - \hat{\Phi}_{u2} \hat{\Phi}_{hh}^{-1}(T^{-1}U_0'X_2 - \hat{\Phi}_{u2}^+ \right] H_2 \left(T^{-2}x_2'Q_xX_2 \right)^{-1} \right] \\
\]

\[= \left[\left(\left(T^{-1}U_0'X_2 - \hat{\Phi}_{u2} \hat{\Phi}_{hh}^{-1}(T^{-1}U_0'X_2 - \hat{\Phi}_{u2}^+ \right) \right) \left((T^{-1}X_2x'X_2) \right)^{-1} \\
+ \left[\left(T^{-1}U_0'X_2 - \hat{\Phi}_{u2} \hat{\Phi}_{hh}^{-1}(T^{-1}U_0'X_2 - \hat{\Phi}_{u2}^+ \right] H_2 \left(T^{-2}x_2'Q_xX_2 \right)^{-1} \right] \\
\right] \\
\]

as required for part (b). From (P32) we see that the stated result holds for a bandwidth expansion rate $K = O(T^k)$ with $0 < k < 2/3$.

Parts (a) and (b) of the theorem hold simultaneously when the bandwidth expansion rate is $K = O(T^k)$ with $1/4 < k < 2/3$.

8.8. PROOF OF COROLLARY 4.2: We work from the proof of Theorem 4.1. Since there is no second block in (P26) and no need for a rotation of the regressor space, the stated result follows directly from (P28) provided $K = O(T^k)$ for $1/4 < k < 1$, as stated.

8.9. PROOF OF COROLLARY 4.3: This follows from the original analysis in Phillips-Hansen (1990). We can deduce the result directly from (P31) with the stated bandwidth expansion rate by noting that when $m_1 = 0$ there is no first term in this expression and then

\[(P33) \quad T(A^+ - A) = \left(\left(T^{-1}U_0'X_2 - \hat{\Phi}_{u2} \hat{\Phi}_{hh}^{-1}(T^{-1}U_0'X_2 - \hat{\Phi}_{u2}^+ \right) \right) \left((T^{-1}X_2x'X_2) \right)^{-1} \\
+ \left[\left(T^{-1}U_0'X_2 - \hat{\Phi}_{u2} \hat{\Phi}_{hh}^{-1}(T^{-1}U_0'X_2 - \hat{\Phi}_{u2}^+ \right] H_2 \left(T^{-2}x_2'Q_xX_2 \right)^{-1} \right] \\
\rightarrow_d \left[\int_0^1 dB_0 B_2 \right] \left[\int_0^1 dB_2 B_2 \right]^{-1} \]

as required. The only restriction on K for this result is $K \rightarrow \infty$, $T/K \rightarrow \infty$ as $T \rightarrow \infty$. This applies when $K = O(T^k)$ and $0 < k < 1$.
8.10. **PROOF OF THEOREM 4.5:** Under the null hypothesis H_0 the Wald statistic W^+ has the form

$$W^+_0 = T[(R_1 \otimes R_2) \text{vec} (\hat{A}^+ - A)] \{R_1 \hat{\Sigma}_0 R_1' \otimes R_2' T(X'X)^{-1} R_2\}^{-1} \times (R_1 \otimes R_2) \text{vec} (\hat{A}^+ - A)$$

$$= T \text{tr} \left\{ (R_1 \hat{\Sigma}_0 R_1')^{-1} [R_1(\hat{A}^+ - A) R_2] [R_2' T(X'X)^{-1} R_2]^{-1} [R_1(\hat{A}^+ - A) R_2]\right\}.$$

From (18) we have

$$R_2 = [H_1 S_{20}, H_1 S_{11} + H_2 S_{k2}; H_2 S_{22}] = [H_1 S_{21} + [0, H_2 S_{k2}]; H_2 S_{22}]$$

where $S_{21} = [S_{20}, S_{k1}]$ has full row rank. The submatrix of coefficients $[0, H_2 S_{k2}]$ in the restriction matrix R_2 produces terms that are of smaller order than those arising from $H_1 S_{21}$ and can be neglected in what follows. Thus, without loss of generality we will set $R_2 = [H_1 S_{21}; H_2 S_{22}]$ in the ensuing development. We start with the decompositions

$$R_2(X'X)^{-1} R_2 = \begin{bmatrix} S_{21}' H_1 (X'X)^{-1} H_1 S_{21} & S_{21}' H_1 (X'X)^{-1} H_2 S_{22} \\ S_{22}' H_2 (X'X)^{-1} H_1 S_{21} & S_{22}' H_2 (X'X)^{-1} H_2 S_{22} \end{bmatrix}$$

and

$$R_1(\hat{A}^+ - A) R_2 = R_1 \left[(\hat{A}_1^+ - A_1) S_{21}; (\hat{A}_2^+ - A_2) S_{22} \right].$$

Set $D_T = \text{diag} [I_{q_2}, T^{1/2} I_{q_2}]$ and then we can write

$$W^+_0 = \text{tr} \left\{ (R_1 \hat{\Sigma}_0 R_1')^{-1} [R_1 T^{1/2}(\hat{A}^+ - A) R_2] \right\} \times D_T [R_2 T(X'X)^{-1} R_2 D_T]^{-1} D_T [R_1 T^{1/2}(\hat{A}^+ - A) R_2]\right\}.$$
Combining these limits we have

\[W_{00}^+ \to_d \text{tr} \left((R_1 \Sigma_{00} R_1')^{-1} \left[Z_1(S_{21}' \Sigma_{11}' S_{21})^{-1} Z_1' + Z_2 S_{22}' \left(\int_0^1 B_2 B_2' \right)^{-1} S_{22} Z_2' \right] \right) = \text{tr} \left((R_1 \Sigma_{00} R_1')^{-1} Z_1(S_{21}' \Sigma_{11}' S_{21})^{-1} Z_1' \right) + \text{tr} \left((R_1 \Sigma_{00} R_1')^{-1} Z_2 S_{22}' \left(\int_0^1 B_2 B_2' \right)^{-1} S_{22} Z_2' \right) = \text{tr}(V_1 V_1') + \text{tr}((R_1 \Omega_{00-2} R_1')^{1/2}(R_1 \Sigma_{11} R_1')^{-1}(R_1 \Omega_{00-2} R_1')^{1/2}V_2 V_2'), \]

where

\[V_1 = (R_1 \Sigma_{00} R_1')^{-1/2} Z_1(S_{21}' \Sigma_{11}' S_{21})^{-1/2} = N(0, I_{q_1 q_{21}}), \]

and

\[V_2 = (R_1 \Omega_{00-2} R_1')^{-1/2} Z_2 = (R_1 \Omega_{00-2} R_1')^{-1/2} \left(R_1 \int_0^1 dB_{0-2} B_2' \left(\int_0^1 B_2 B_2' \right)^{-1} S_{22} \left(\int_0^1 B_2 B_2' \right)^{-1} S_{22} \right) = N(0, I_{q_1 q_{22}}). \]

Now let \(C \) be an orthogonal matrix for which

\[C^\top \left(R_1 \Omega_{00-2} R_1' \right)^{1/2} (R_1 \Sigma_{00} R_1')^{-1}(R_1 \Omega_{00-2} R_1')^{1/2} C = D = \text{diag}(d_1, \ldots, d_{q_1}), \]

and let \(\tilde{V}_2 = C V_2 = N(0, I_{q_1 q_{22}}). \) Then

\[W_{00}^+ \to_d \text{tr}(V_1 V_1') + \text{tr}(D \tilde{V}_2 \tilde{V}_2') = \chi^2_{q_{21}} + \sum_{i=1}^{q_1} d_i \chi^2_{q_{22}}(i), \]

where \(\chi^2_{q_{22}}(i) \sim \text{iid} \chi^2_{q_{22}}, i = 1, \ldots, q_1. \) Thus, the limit distribution of \(W^+ \) is a linear combination of \(\chi^2 \) variates and the stated result follows.

8.11. PROOF OF THEOREM 5.1: The matrix \(X \) is partitioned into stationary and nonstationary components as

\[X = [Z, Y_{-1}] = [Z, Y_{1-1}; Y_{2-1}] := [Z, V; Y_{2-1}] := [X_1; X_2]. \]

Using this partition and the formula for \(\hat{F}^+ \) given in (34') we have in an obvious subscript notation

\[\hat{F}^+ - F = \left[E' E, E' V - \hat{\Theta}_{z_x} \hat{\Theta}_{z_x}^{-1} (\Delta Y'_1 V - \hat{\Delta}_{y_2} \Delta y_2) \right] \left(X' X \right)^{-1}. \]

Now, partitioning the inverse of \(X' X \) we obtain

\[\hat{F}^+ = \sqrt{T} \left(\hat{E}^+ - E_1 \right) = \sqrt{T} \left[T^{-1/2} E Z, T^{-1} E V - \hat{\Theta}_{z_x} \hat{\Theta}_{z_x}^{-1} (T^{-1} \Delta Y'_1 V - \hat{\Delta}_{y_2} \Delta y_2) \right] (T^{-1} X_2' Q_x X_1)^{-1} \]

\[\times \left(T^{-1/2} X_2' X_2 \right)^{-1} (T^{-1} X_2' X_2) (T^{-1} X_2' Q_x X_1)^{-1} \]

\[= \left[T^{-1/2} E' X_1 + O_p(K^{-2} T^{1/2}) + O_p(K^{-1/2}) (T^{-1} X'_1 X_1)^{-1} + O_p(T^{-1/2}), \right. \]

This content downloaded from 130.132.173.38 on Wed, 14 May 2014 09:50:33 AM
All use subject to JSTOR Terms and Conditions
where the error orders of magnitude follow from Lemma 8.4 much as in the proof of the first part of Theorem 4.1. We deduce that

\[\sqrt{T} (\hat{\theta}_2^*-F_2) = (T^{-1/2} E X_1) (T^{-1} X_1 X_1)^{-1} + o_p(1) \to_d N(0, \Sigma_{xx} \otimes \Sigma_{11}^{-1}), \]

where \(\Sigma_{11} = E(x_{11} x_{11}) \) and is positive definite, as shown in Lemma 1(iii) of Toda and Phillips (1991).

Next we consider the second block of (P37), i.e.

\[T^{-1} E' X_2 - \hat{\Omega}_{xx}^{-1} \left(T^{-1} \Delta Y_{-1} X_2 - \hat{\Delta}_{\Delta} \Delta X_2 \right)^{-1} \left(T^{-2} X_2 Q X_2 \right)^{-1} - O_p(T^{-1/2}) + \left[T^{-1} E' X_2 - \Omega_{xx}^{-1} \left(T^{-1} \Delta X_2^2 X_2 - \hat{\Delta}_{\Delta} \Delta X_2 \right) \right] \]

\[\times \left[T^{-2} X_2 X_2 + O_p(T^{-1}) \right]^{-1} \]

using Lemma 8.4. Now

\[T^{-1} E' X_2 \to_d \int_0^1 dB_2 B'_2, \quad T^{-2} X_2 X_2 \to_d \int_0^1 B_2 B'_2, \]

\[T^{-1} \Delta X_2^2 X_2 \to_d \int_0^1 B_2^2 B_2^2 + \Delta_{u2}^2, \quad \text{and} \quad \hat{\Delta}_{\Delta} \Delta X_2 \to_d \Delta_{\Delta} \Delta X_2. \]

Hence

\[T(\hat{\theta}_2^*-F_2) \to_d \left(\int_0^1 dB_2 B'_2 \right) \left(\int_0^1 B_2 B'_2 \right)^{-1}, \]

where \(B^2 = B - \Omega_{xx}^{-1} \Omega_{xx}^{-1} \Omega_{xx} \Omega_{xx}^{-1} = BM(\Omega_{xx}^{-1}) \) with \(\Omega_{xx}^{-1} = \Omega_{xx} - \Omega_{xx}^{-1} \Omega_{xx} \Omega_{xx}^{-1} \).

Again, the error orders of magnitude in these derivations follow as in the proof of Theorem 4.1. Consequently, the bandwidth expansion rates under which (P38) and (P39) hold are the same as those given in Theorem 4.1 for the stationary and nonstationary components. The stated result follows directly.

8.12. PROOF OF COROLLARY 5.2: This follows directly from Theorem 5.1 because the submatrix \(F_2 \) is null when \(r = n \).

8.13. PROOF OF COROLLARY 5.3: When \(r = 0, \ F_2 = I_n \) and \(A = I_n \) in (24'). We then have the model

\[[I-J^* (L) L] \Delta Y_t = \epsilon_t, \]

or

\[\gamma_t = Y_t - Y_{t-1} + u_t, \quad \text{with} \quad u_t = [I-J^*(L) L]^{-1} \epsilon_t. \]

In this case the subscript "2" that appears in our various formulae, like the limit theory in part (b) of Theorem 5.1, refers to the entire vector \(u_t \) or \(\epsilon_t \) as the case may be. From (P40), the long-run covariance matrix of \(u_t \) is

\[\Omega_{uu} = C \Omega_{xx} C' = C \Sigma_{xx} C', \quad C = [I-J^*(1)]^{-1}. \]

Let \(B_r(r) = BM(\Omega_{uu}) \) and \(B_r(r) = BM(\Omega_{xx}) \) be the limits of the partial sum process \(T^{-1/2} \Sigma^T u_t \) and \(T^{-1/2} \Sigma^T \varepsilon_t \). Then, necessarily, \(B_r(r) = CB_r(r) \) (e.g., see Phillips and Solo (1992)), and

\[B_{r}^{u} (r) = B_{r} (r) - \Omega_{uu}^{-1} B_{r} (r) = B_{r} (r) - \Omega_{xx}^{-1} C (C \Omega_{xx} C')^{-1} C B_{r} (r) \]

\[= B_{r} (r) - B_{r} (r) = 0 \quad \text{a.s.} \]
Hence, the limit distribution given in Theorem 5.1(b) for this case where \(r = 0 \) is

\[
\left(\int_0^1 dB_{\epsilon u} B_u' \right) \left(\int_0^1 B_u B_u' \right)^{-1} \rightarrow 0 \quad \text{a.s.,}
\]

and thus \(T(\hat{\epsilon}_2 - I_n) \rightarrow_d 0 \).

8.14. **Proof of Theorem 5.5**: The error in the levels VAR estimator is \(\hat{\epsilon} - F = E'X(X'X)^{-1} \). Partitioned regression yields:

\[
\sqrt{T}(\hat{\epsilon}_1 - F_1) = (T^{-1/2} E'Q_2 X_1)(T^{-1} X'_1 Q_2 X_1)^{-1} \rightarrow_d N(0, \Sigma_{\epsilon\epsilon} \otimes \Sigma_{11}^{-1})
\]

giving part (a); and

\[
T(\hat{\epsilon}_2 - F_2) = (T^{-1} E'Q_1 X_2)(T^{-2} X'_2 Q_1 X_2)^{-1} \rightarrow_d \left(\int_0^1 dB_{\epsilon 2} B_2' \right) \left(\int_0^1 B_2 B_2' \right)^{-1}.
\]

Using the decomposition \(B_\epsilon = B_{\epsilon 2} + \Omega_{\epsilon 2} Q_2^{-1} B_2 \) (from Phillips (1989, Lemma 3.1)) we get the stated result for part (b).

8.15. **Proof of Theorem 5.7**: From (42) and (43') we have

\[
\hat{\epsilon} + F = H(\hat{\epsilon} + F)(I_k \otimes H').
\]

We now partition \(\hat{\epsilon} + F \) on the right side of this equation as \(\hat{\epsilon} + F = [\hat{\epsilon}_1 + F_1; \hat{\epsilon}_2 + F_2] \) with the corresponding partition of \(I_k \otimes H' \), viz.

\[
I_k \otimes H' = \begin{bmatrix} I_{k-1} \otimes H' & 0 \\ 0 & \beta' \end{bmatrix} = \begin{bmatrix} G' \\ \beta' \end{bmatrix}.
\]

Note that

\[
\sqrt{T}(\hat{\epsilon} + F) = H \left[\sqrt{T}(\hat{\epsilon}_1 + F_1) ; O_p(T^{-1/2}) \right] \begin{bmatrix} G' \\ \beta' \end{bmatrix} \rightarrow_d N(0, H \Sigma_{\epsilon\epsilon} H' \otimes G \Sigma_{11}^{-1} G')
\]

using part (a) of Theorem 5.1. Observing that \(\Sigma_{\epsilon\epsilon} = H' \Sigma_{\epsilon\epsilon} H \) gives the stated result (a), and (a') follows immediately.

To prove part (b) we write

\[
T(\hat{\epsilon} + F) G' = H \left[T(\hat{\epsilon}_1 + F_1) ; T(\hat{\epsilon}_2 + F_2) \right] G' = H T(\hat{\epsilon}_1 + F_1) T(\hat{\epsilon}_2 + F_2)
\]

\[
= H \left[T(\hat{\epsilon}_1 + F_1) ; T(\hat{\epsilon}_2 + F_2) \right] \begin{bmatrix} 0 \\ 0 \\ I_{n-r} \end{bmatrix} = HT(\hat{\epsilon}_2 + F_2)
\]

\[
\rightarrow_d H \left(\int_0^1 dB_{\epsilon 2} B_2' \right) \left(\int_0^1 B_2 B_2' \right)^{-1} \left(\int_0^1 dB_{\epsilon 2} B_2' \right) \left(\int_0^1 B_2 B_2' \right)^{-1},
\]

giving the required result.

8.16. **Proof of Theorem 6.1**: The proof is essentially the same as the proof of Theorem 4.5. The additional \(\chi_{\phi q}^2 \) term that appears in the limit (54) of \(W_{\phi}^n \) comes from the quadratic form associated with the restrictions \(R_1 J R_{22} = R_1 \) in \(\mathcal{M}_0 \) that relate to the known stationary coefficients \(J \) in the model (42). The remaining components in (54) arise precisely in the same manner as those in Theorem 4.5.
8.17. PROOF OF THEOREM 6.3: When \(r = 0 \) we have \(F = [J; A] = [F_1; F_2] \). From Theorem 5.7 we have

\[
\sqrt{T} (\mathbf{\hat{F}}^+ - F) \to_d N(0, \Sigma_{ee} \otimes G_H \Sigma_{11}^{-1} G_H')
\]

where

\[
G_H = \begin{bmatrix}
I_{k-1} \otimes H \\
0
\end{bmatrix} n \times (k-1)
\]

and

\[
T(\mathbf{\hat{A}}^+ - I_n) \to_p 0.
\]

Next the test statistic is

\[
W_F^+ = T \text{tr} \left\{ (R_1 \mathbf{\hat{\xi}}_{ee} R_1')^{-1} \left[R_1 (\mathbf{\hat{F}}^+ - F) R_2 \right] \left[R_2^T T(X'X)^{-1} R_2 \right]^{-1} \left[R_1 (\mathbf{\hat{F}}^+ - F) R_2 \right] \right\}
\]

\[
= \text{tr} \left\{ (R_1 \mathbf{\hat{\xi}}_{ee} R_1')^{-1} \left[R_1 T^{1/2}(\mathbf{\hat{J}}^+ - J) R_2 J ; R_1 T(\mathbf{\hat{A}}^+ - I) R_2 A \right] \right\}
\]

\[
\times \left\{ (R_1 \mathbf{\hat{\xi}}_{ee} R_1')^{-1} \left[R_1 T^{1/2}(\mathbf{\hat{J}}^+ - J) R_2 J ; R_1 T(\mathbf{\hat{A}}^+ - I) R_2 A \right] \right\}
\]

where \(D_T = \text{diag}(I_{q_1}, T^{1/2} I_{q_2}) \). Now, writing \(X = [Z, Y_{-1}] \) and performing a partitioned inversion of \((X'X)^{-1}\) we have, in a conventional notation (denoting \(\alpha_{12} = -T^{-1}(Z'Q_1 Z) \)),

\[
D_T R_2 T(X'X)^{-1} R_2 D_T = D_T R_2 \begin{bmatrix}
(T^{-1} Z' Q_1 Z)^{-1} & \alpha_{12} \\
\alpha_{21} & T^{-1} (T^{-2} Y_{-1}' Q_2 Y_{-1})^{-1}
\end{bmatrix} R_2 D_T
\]

\[
= \begin{bmatrix}
R_2 J (T^{-1} Z' Q_1 Z)^{-1} R_2 J & O_p(T^{-1/2}) \\
O_p(T^{-1/2}) & R_2 A (T^{-2} Y_{-1}' Q_2 Y_{-1})^{-1} R_2 A
\end{bmatrix}
\]

\[
= \begin{bmatrix}
R_2 J (T^{-1} Z' Z)^{-1} R_2 J & 0 \\
0 & R_2 A (T^{-2} Y_{-1}' Y_{-1})^{-1} R_2 A
\end{bmatrix} + o_p(1).
\]

Inverting (P44) and using the fact that \(T(\mathbf{\hat{A}}^+ - I_n) = o_p(1) \) from (P42), we deduce that

\[
W_F^+ = \text{tr} \left\{ (R_1 \mathbf{\hat{\xi}}_{ee} R_1')^{-1} \left[R_1 T^{1/2}(\mathbf{\hat{J}}^+ - J) R_2 J \right] \left[R_2 J (T^{-1} Z' Z)^{-1} R_2 J \right]^{-1} \right\} + o_p(1).
\]

Finally, from (P41) we have

\[
\sqrt{T} (\mathbf{\hat{F}}_1^+ - F_1) = \sqrt{T} (\mathbf{\hat{J}}^+ - J) \to_d N(0, \Sigma_{ee} \otimes (I_{k-1} \otimes H) \Sigma_{11}^{-1}(I_{k-1} \otimes H))
\]

and

\[
T(Z' Z)^{-1} = T[(I_{k-1} \otimes H) Z' Z(I_{k-1} \otimes H')]^{-1} \to_p (I_{k-1} \otimes H) \Sigma_{11}^{-1}(I_{k-1} \otimes H).
\]

Thus, \(W_F^+ \to_d \chi^2_{q_1 q_2} \), as stated.
REFERENCES

