The Distribution of Matrix Quotients

P. C. B. Phillips

Yale University

Communicated by S. Das Gupta

Cramér's inversion formula for the distribution of a quotient is generalized to matrix variates and applied to give an alternative derivation of the matrix t-distribution. © 1985 Academic Press, Inc

1. Introduction

Useful inversion formulae which apply for scalar ratios of random variates and which proceed from the joint characteristic function of the component variates have been known for some time. In particular, if the scalar random variate \(\eta \geq 0 \) and has a finite mean, Cramér [1] and Geary [3] give the following formula for the density of the ratio \(\zeta = \xi/\eta \):

\[
f'(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\frac{\partial \phi(s_1, s_2)}{\partial s_2} \right]_{s_2 = -z s_1} ds_1
\]

where \(\phi(s_1, s_2) \) is the joint characteristic function of \((\xi, \eta) \). Gurland [4] generalized (1) by considering the multidimensional case of a vector of ratios and relaxed the requirements that \(\eta \) necessarily be positive or have a finite mean (by using principal values in the integrals that define the inversions).

Closely related statistics that take the form of matrix quotients arise frequently in multivariate analysis. A common situation (leading, for example, to the matrix t-distribution) is the following. Let \(A \) be a positive definite \(n \times n \) matrix variate partitioned as

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

\[
l \quad k
\]

\[
l + k = n
\]

Received May 21, 1982; revised June 10, 1983.

Key words and phrases: matrix variates, characteristic functions, matrix t-distribution.

0047-259X/85 $3.00

Copyright © 1985 by Academic Press, Inc

All rights of reproduction in any form reserved.
and suppose interest centers on the distribution of the quotient \(X = A_{21}^{-1}A_{22} \). For example, when \(A \) is central Wishart with degrees of freedom \(T > k \), \(X \) is a regression coefficient matrix for multivariate normal samples and is known to have a matrix normal \(t \)-distribution \([2, 6, 7]\).

In developing the analogue of the Cramér formula for matrix variates such as \(X \), the following notation is convenient. Corresponding to the symmetric matrix \(F = (f_{ij})_{n \times n} \) we define the matrix \(\eta F = (\eta f_{ij}) \) where \(\eta_{ij} = 1, 1/2 \) for \(i = j \), \(i \neq j \) respectively. We denote the joint characteristic function of \(A \) by \(\phi^* (\eta F) = E \{ \text{etr}(\eta F A) \} \). Partitioning \(F \) and \(\eta F \) conformably with \(A \) in (2), we define

\[
\phi(F_{21}, \eta F_{22}) = E \{ \text{etr}(iF_{21}A_{21}^* + i_\eta F_{22}A_{22}) \}
= E \{ \text{etr}(2i_\eta F_{21}A_{21}^* + i_\eta F_{22}A_{22}) \}
= [\phi^*(\eta F)]_{\eta F_{11} = 0},
\]

which is the joint characteristic function of the distinct elements of \((A_{21}, A_{22}) \). With this notation we develop an inversion formula for the joint density of the matrix quotient \(X = A_{21}^{-1}A_{22} \) which generalizes (1) above.

Theorem. Suppose the joint density function \(f(A_{21}, A_{22}) \) of \((A_{21}, A_{22}) \) exists everywhere and \(A_{22} \) is a positive definite matrix. Then, if \(E(\text{det} A_{22}) \) exists, the density function of \(X = A_{21}^{-1}A_{22} \) is given by

\[
f(X) = \left(\frac{1}{2\pi} \right)^{kt} \int_{\text{det} > 0} [D_{ss}f_{21} - (XF_{21} + F_{21}X')/2] dF_{21}
\]

where \(D_{ss} \) is the differential operator \(\text{det}(\partial / \partial F_{22}) = \text{det}[(\partial / \partial f_{rs})] \) where \(f_{rs} \) denotes the \((r, s)\)th element of \(F_{22} \).

2. Proof of the Theorem

By direct transformation of \((A_{21}, A_{22}) \rightarrow (X, A_{22}) \) we deduce that

\[
f(X) = \int_{A_{22} > 0} f(A_{22}X, A_{22})(\text{det} A_{22})^t dA_{22}.
\]

We observe that the joint density

\[
f^*(A_{21}, A_{22}) = |E(\text{det} A_{22})|^{-1}(\text{det} A_{22})^t f(A_{21}, A_{22})
\]
defines a new distribution whose characteristic function \(E[\text{etr}(iF_{21}A_{21} + i\alpha F_{22}A_{22})] \) is given by

\[
[E(\det A_{22})]^{|-1|} \int \text{etr}(iF_{21}A_{21} + i\alpha F_{22}A_{22})(\det A_{22})^{|-1|} f(A_{21}, A_{22}) \, dA_{21} \, dA_{22}
\]

\[
= [E(\det A_{22})]^{-1} \int D_{22} \text{etr}(iF_{21}A_{21} + i\alpha F_{22}A_{22}) f(A_{21}, A_{22}) \, dA_{21} \, dA_{22} / i^{kl}
\]

\[
= [E(\det A_{22})]^{-1} D_{22} \phi(F_{21}, i\alpha F_{22}) / i^{kl}
\]

(7)

where the absolute convergence of the integral allows us to interchange the order of integration and differentiation.

Next consider the distribution of the matrix variate \(W = A_{21} - A_{22}X \) given \(X \) where the joint distribution of \((A_{21}, A_{22})\) is defined by (6). The density of \(W \) is

\[
f(W) = \int_{A_{22} > 0} f^*(W + A_{22}X, A_{22}) \, dA_{22}.
\]

(8)

From (5) and (6) we see that \(f(W) \) reduces to \([E(\det A_{22})]^{-1} f(X) \) when \(W = 0 \). We further note that the characteristic function of \(W \) is obtained by setting \(i\alpha F_{22} = -\frac{1}{2}(XF_{21} + F_{21}X') \) in (7), that is

\[
[E(\det A_{22})]^{-1} D_{22} \phi(F_{21}, i\alpha F_{22}) \big|_{i\alpha F_{22} = -\frac{1}{2}(XF_{21} + F_{21}X')}.
\]

(9)

The required formula (4) for the density function \(f(X) \) now follows from inversion of the characteristic function (9) and from taking its value at \(W = 0 \).

3. Application to the Matrix t-Distribution

Consider the canonical case of a central Wishart matrix \(A \) with degrees of freedom \(T \) and covariance matrix \(I_n \). The joint characteristic function of \(A \) is

\[
\phi^*(\alpha F) = [\det(I - 2i\alpha F)]^{-T/2}
\]

and simple manipulations yield

\[
\phi(F_{21}, i\alpha F_{22}) = [\det(I - 2i\alpha F_{22} + F_{21}F_{21}')]^{-T/2}.
\]

(10)
Moreover,
\[
D_{22} \delta(F_{21}, F_{22})
\]
\[
= D_{22} \int_{S > 0} \text{etr}(-S(I - 2i \eta F_{22} + F_{21} F_{21}'))
\]
\[
\times (\det S)^{T/2 - (k + 1)/2} dS/I_k(T/2)
\]
\[
= (2i)^k [I_k(T/2)]^{-1} \int_{S > 0} \text{etr}(-S(I - 2i \eta F_{22} + F_{21} F_{21}'))
\]
\[
\times (\det S)^{T/2 + 1 - (k + 1)/2} dS
\]
\[
= (2i)^k (I_k(T/2 + l)/I_k(T/2)) [\det(I - 2i \eta F_{22} + F_{21} F_{21}')]^{-T/2 - l}.
\]
(11)

Substitution of (11) in (4) leads to the following expression for the joint density of \(X = A_{22}^{-1} A_{21}^{-1} \):
\[
f(X) = \frac{I_k(T/2 + l)}{\pi^k I_k(T/2)} \int_{\mathbb{R}^{kl}} |\det(I - i(XF_{21} + F_{21}X')) + F_{21} F_{21}'|^{-T/2 - l} dF_{21}
\]
\[
= \frac{I_k(T/2 + l)}{\pi^k I_k(T/2)} [\det(I + XX')]^{-T/2 - l}
\]
\[
\cdot \int_{\mathbb{R}^{kl}} [\det(I - (I + XX')^{-1/2}(X + iF_{21})(X + iF_{21}))]
\]
\[
\cdot (I + XX')^{-1/2} |^{T/2 - l} dF_{21}.
\]
(12)

We transform \(F_{21} \rightarrow Z = (I + XX')^{-1/2}(F_{21} - iX) \) in the integral in (12). This transformation has Jacobian \(|\det(I + XX')|^{l/2} \) and we deduce that
\[
f(X) = \frac{I_k(T/2 + l)}{\pi^k I_k(T/2)} [\det(I + XX')]^{-l(T + l)/2} \int_{\mathbb{R}^{kl}} [\det(I + ZZ')]^{-T/2 - l} dZ.
\]
(13)

The domain of integration in (13) can be taken to be \(\mathbb{R}^{kl} \) as before, since the integrand is analytic in a strip of \(C^{kl} \) that contains \(\mathbb{R}^{kl} - i(I + XX')^{-1/2} X \).

In view of the integral
\[
\int_{\mathbb{R}^{kl}} [\det(I + ZZ')]^{-T/2 - l} dZ = \frac{\pi^{kl/2} I_k(T/2 + l/2)}{I_k(T/2 + l)}
\]
(for example, [2, p. 512]) it follows that the joint density of \(X = A_{22}^{-1} A_{21}^{-1} \) is
\[
f(X) = \frac{I_k(T/2 + l/2)}{\pi^{kl/2} I_k(T/2)} [\det(I + XX')]^{-l(T + l)/2}.
\]
REFERENCES

