ON A THEOREM OF HALMOS CONCERNING UNBIASED ESTIMATION OF MOMENTS

H. S. KONIJN

(received 11 August 1963)

1. Introduction

In [4] Halmos considers the following situation. Let \mathcal{D} be a class of distribution functions over a given (Borel) subset E of the real line, and F a function over \mathcal{D}. He investigates which functions F admit estimates that are unbiased over \mathcal{D} and what are all possible such estimates for any given F. In particular he shows that on the basis of a sample (of size n) one can always obtain an estimate of the first moment which is unbiased in \mathcal{D} and that the central moments F_m of order $m \geq 2$ have estimates which are unbiased in \mathcal{D} if and only if $n \geq m$, provided \mathcal{D} satisfies the following properties: F_m exists and is finite for all distributions in \mathcal{D} and \mathcal{D} includes all distributions which assign probability one to a finite number of points of E. Halmos also finds that symmetric estimates which are unbiased on \mathcal{D} are unique and have smaller variances on \mathcal{D} than unsymmetric unbiased estimates.

He recognizes that his assumptions are too restrictive for most applications and mentions in particular the case where \mathcal{D} is the class of all normal distributions. The present paper addresses itself to that case.

2. Statement of results

If \mathcal{D} is the class of all nondegenerate univariate normal distributions, then, on the basis of a sample (of size n), an estimate of the first moment which is unbiased over \mathcal{D} exists (and is unique when $n = 1$); and a central moment of order $2r \geq 2$ has estimates which are unbiased over \mathcal{D} if and only if $n \geq 2$, and has a unique symmetric unbiased estimate when $n = 2$, but not when $n > 2$.

Specifically, this means the following:

Let z_1, \ldots, z_n be a sample from a normal distribution with mean μ and variance $\sigma^2 > 0$. Let $\bar{z} = \frac{1}{n} \sum z_i$, $S^2 = \sum (z_i - \bar{z})^2$. Recall that the even

\textit{It will be convenient to call a function on a k-dimensional Euclidean space the unique function satisfying a certain property if any other function on this space satisfying the property may differ from it only on a set of k-dimensional Lebesgue measure zero.}
central moments \bar{F}_{2r} equal $\omega^{2r-2}(2r)!/r!$ and the odds vanish.

(a) If $n = 1$, \bar{z} is the unique unbiased estimate of ν, and no unbiased estimate of \bar{F}_{2r} exists for $r = 1, 2, \ldots$. In [5] this seemingly uninteresting fact turns out to be the key to a quite practical question.

(b) If $n \geq 2$,

$$\bar{f}_{2r} = \frac{\{(n-3)/2\}!(2r)!}{\{(n+2r-3)/2\}!r!} (S/2)^{2r}$$

is an unbiased estimate of \bar{F}_{2r} ($r = 1, 2, \ldots$), and is the unique symmetric unbiased estimate if $n = 2$, but not if $n > 2$. It then follows from [6] that \bar{z} and \bar{f}_{2r}

(c) are the unique unbiased estimates of ν and \bar{f}_{2r}, respectively, which depend only on the sufficient statistic (\bar{z}, S^2)

(d) have the smallest variance among all unbiased estimates.

Note that \bar{z} and S^2 are symmetric functions of the observations. The usual symmetric estimate \bar{f}'_{2r} for \bar{F}_{2r}, which is unbiased for all distribution functions for which \bar{F}_{2r} exists, is defined only when $n \geq 2r$. When $r = 1$ it coincides with \bar{f}_2, when $r = 2$ it equals [2, 27.6]

$$\bar{f}'_4 = (n!)^{-1}(n-4)! \{n(n^2-2n+3) \sum (z_i - \bar{z})^4 - 3(2n-3)S^4 \} \quad (n \geq 4).$$

For any family \mathcal{D} as first mentioned in the introduction or mentioned in the final section \bar{f}'_{2r} is the only symmetric estimate which is unbiased for all distributions of \mathcal{D}. But, if for \mathcal{D} we take the class of nondegenerate univariate normal distributions, our results imply that the symmetric estimate \bar{f}'_{2r} is also unbiased over this class and has a smaller variance than \bar{f}_{2r} for $r > 1$.

In the next two sections we prove the parts of (a) and (b) which are not immediate.

3. Nonexistence of an unbiased estimate of \bar{F}_{2r} in a sample of one

In this section denote z_1 by z. If $h(z)$ is an unbiased estimate of \bar{F}_{2r}, then

$$\int_{-\infty}^{\infty} \{h(z+\nu) - z^{2r}\} \exp \left(-\frac{1}{2}\omega^2 \nu^2\right) d\nu$$

should vanish for all ν and all $\omega > 0$. This integral can be written as an

8 It has been remarked that it is obvious that from a sample of one it is not possible to obtain an unbiased estimate of two independent parameters (that is, two functions F_1 and F_2 on a class of distributions such that there exists no function g in the plane with $g(F_1(D), F_2(D)) = 0$ for all distributions D in the class). That this is not so is easily shown by an example. Let $\theta = r + \omega^2$, where r and ω^2, the mean and variance, are independent parameters when, e.g., the class is the normal class. Then r and θ are also independent parameters over that class with unbiased estimates z_1 and z_1^2.‌
integral over the positive axis and then we can make the substitution \(u = z^r \) and obtain, setting \(\omega' = (2\omega)^{-1} \), that

\[
\int_0^\infty \{h(-u^r + v) + h(u^r + v) - 2u^r\}u^{-\frac{1}{2}} \exp\{-u\omega'\} du
\]

is zero for all \(v \) and all \(\omega' > 0 \). This being a Laplace transform of \(u^{-\frac{1}{2}} \times \) the expression in brackets, it follows that

\[
h(-z^r + v) + h(z^r + v) - 2z^{2r} = 0
\]

for all \(v \) and almost all positive \(z \). For all \(v \) there is a set \(S_\nu \) on the positive \(z \) axis such that the Lebesgue measure \(l \) of the positive points \(z \) not in \(S_\nu \) is zero and such that the above equality holds on \(S_\nu \). Denote \(\bigcap_{k=1,2,4,5} S_{(k+2)/8} \) by \(T \).

It is easily shown\(^5\) that there exists a pair of points \(a \) and \(\frac{3a}{2} \) in \(T \). Choosing \(v = a \) and \(2a \) respectively gives for \(z = a \)

\[
h(0) + h(2a) = 2a^{2r}, \quad h(a) + h(3a) = 2a^{2r},
\]

so that

\[
h(0) + h(a) + h(2a) + h(3a) = 4a^{2r}.
\]

Choosing \(v = \frac{3a}{2} \) and \(2\frac{3a}{2} \) respectively gives for \(z = \frac{1}{2}a \)

\[
h(0) + h(\frac{3a}{2}) = a^{2r}/2^{2r-1}, \quad h(2a) + h(3a) = a^{2r}/2^{2r-1},
\]

so that

\[
h(0) + h(a) + h(2a) + h(3a) = a^{2r}/2^{2r-2}.
\]

Since \(a \neq 0 \), this is a contradiction.

4. Uniqueness of the unbiased symmetric estimate of \(\hat{F}_{2r} \) in a sample of two and nonuniqueness in a larger sample

For \(n \geq 2 \) (so that \(S^2 \) is not identically zero) the sufficiency of the statistic \((\mathcal{I}, S^2)\) and the completeness of its distribution imply that \(\hat{F}_{2r} \) is the unique unbiased estimate of its expectation \(\hat{F}_{2r} \), among unbiased estimates depending on \((\mathcal{I}, S^2)\) only \([5]\). Now if \(n = 2 \), \((\mathcal{I}, S^2)\) determines the set \(\{z_1, z_2\} \) of observations, but not their order. Therefore \(\hat{F}_{2r} \) is also the unique unbiased estimate of \(\hat{F}_{2r} \), among unbiased estimates which are symmetric in the observations.

In general, when \(n > 2 \), for any \(a \neq 0 \),

\(^5\) Let \(a' \) be in \(T \) and let \(0 < b < a' \). Define the disjoint intervals \(I_i \) from \(ia' + b \) to \(i(a' + b) \) for \(i = 1, 2, \) which have \(l(I_i) = ib \). Denote by \(p_i(I, T) \) the set of points \(x \) in \(I_i \) \(T \) such that \(i(x) \) is in \(I_i, T \); \(l(p_i(I, T)) = ib \). Now let

\[
T_x = T_{p_x}(I, T), \quad T_1 = p_1(I_1 T_1);
\]

then, since the \(T_i \) are subsets of \(T \) of measure \(ib \), there exists \(a > 0 \) such that \(\frac{1}{ib} a \) is in \(T_i \) for \(i = 1 \) and 2. In fact, there exist \(c \) such that, for almost all \(a \) in \(T \), \(\frac{1}{ib} a \) is in \(T \). For brevity use \(c = 0 \).
\[\tilde{F}_r + a(n+1) \sum (x_i - \bar{x})^4 - 3(n-1)S^4 \]

will be an unbiased symmetric estimate of \(F_r \), different from \(\tilde{F}_r \), since the mean of \(\sum (x_i - \bar{x})^4 \) is \(3n^{-1}(n-1)^2\sigma^4 \) and the mean of \(S^4 \) is \((n-1)(n+1)\sigma^4 \), and since for \(n > 2 \) the bracket is not identically equal to zero. For example, if \(n = 3 \), \(1 \frac{1}{2} \sum (x_i - \bar{x})^4 \) has mean \(\tilde{F}_4 + 3\tilde{F}_2^2 \) and, in the normal case, \(S^4 \) has mean \(8\tilde{F}_2^2 \), so that \(1 \frac{1}{2} \sum (x_i - \bar{x})^4 - S^4/4 \) and \(\frac{3}{4} \sum (x_i - \bar{x})^4 \) are unbiased estimates of \(\tilde{F}_4 \) different from \(\tilde{F}_4 = 3S^4/8 \).

5. Remarks

One could similarly discuss unbiased estimation of other functions over the class of normal distributions.

Fraser [3] adapts Halmos' argument to cases where \(\mathcal{D} \) is a certain class of distributions that have a density. Some cases of this kind have been found by Lehmann and Scheffé; see [1].

The writer is much indebted to T. C. Koopmans and T. N. Srinivasan for helpful suggestions.

References

Department of Economics,
The City College,
New York,
and
Cowles Foundation.