COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 208281
New Haven, CT 06520-8281

Lux et veritas

COWLES FOUNDATION DISCUSSION PAPER NO. 0000

Moderate Deviations of Generalized Method of
Moments and Empirical Likelihood Estimators

Taisuke Otsu

February 2011

This paper studies moderate deviation behaviors of the generalized method of moments and generalized empirical likelihood estimators for generalized estimating equations, where the number of equations can be larger than the number of unknown parameters. We consider two cases for the data generating probability measure: the model assumption and local contaminations or deviations from the model assumption. For both cases, we characterize the first-order terms of the moderate deviation error probabilities of these estimators. Our moderate deviation analysis complements the existing literature of the local asymptotic analysis and misspecification analysis for estimating equations, and is useful to evaluate power and robust properties of statistical tests for estimating equations which typically involve some estimators for nuisance parameters.

Keywords: Generalized method of moments, Empirical likelihood, Moderate deviations, Large deviations

JEL Classification: C13, C14