COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 208281
New Haven, CT 06520-8281

Lux et veritas

COWLES FOUNDATION DISCUSSION PAPER NO. 1640R

Efficient Estimation of Semiparametric Conditional Moment Models
with Possibly Nonsmooth Residuals

Xiaohong Chen (Yale) and Demian Pouzo (New York University)

February 2008
Revised July 2009

This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (theta) and unknown functions (h) of endogenous variables. We show that: (1) the penalized sieve minimum distance (PSMD) estimator (theta\hat,h\hat) can simultaneously achieve root-n asymptotic normality of theta\hat and nonparametric optimal convergence rate of h\hat, allowing for noncompact function parameter spaces; (2) a simple weighted bootstrap procedure consistently estimates the limiting distribution of the PSMD theta\hat; (3) the semiparametric efficiency bound formula of Ai and Chen (2003) remains valid for conditional models with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bound; (4) the centered, profiled optimally weighted PSMD criterion is asymptotically chi-square distributed. We illustrate our theories using a partially linear quantile instrumental variables (IV) regression, a Monte Carlo study, and an empirical estimation of the shape-invariant quantile IV Engel curves.

Keywords: Penalized sieve minimum distance, Nonsmooth generalized residuals, Nonlinear nonparametric endogeneity, Weighted bootstrap, Semiparametric efficiency, Confidence region, Partially linear quantile IV regression, Shape-invariant quantile IV Engel curves

JEL Classification: C14; C22